Gyorgy Csaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240849/publications.pdf

Version: 2024-02-01

		126907	106344
183	5,288	33	65
papers	citations	h-index	g-index
106	100	100	2572
186	186	186	3572
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanomagnetic Logic: From Devices toÂSystems. Computer Architecture and Design Methodologies, 2023, , 107-143.	0.8	O
2	Experimental demonstration of a concave grating for spin waves in the Rowland arrangement. Scientific Reports, 2021, 11, 14239.	3.3	13
3	The 2021 Magnonics Roadmap. Journal of Physics Condensed Matter, 2021, 33, 413001.	1.8	287
4	Characterization of nonlinear spin-wave interference by reservoir-computing metrics. Applied Physics Letters, 2021, 119, .	3.3	19
5	Efficient electromagnetic transducers for spin-wave devices. Scientific Reports, 2021, 11, 18378.	3.3	10
6	Nanoscale neural network using non-linear spin-wave interference. Nature Communications, 2021, 12, 6422.	12.8	81
7	Comparing Different PC and FPGA Implementation Possibilities of Fast Multipole Method. , 2021, , .		0
8	Coupled oscillators for computing: A review and perspective. Applied Physics Reviews, 2020, 7, .	11.3	143
9	Distance Computation Based on Coupled Spin-Torque Oscillators: Application to Image Processing. Physical Review Applied, 2020, 14, .	3.8	9
10	Nanomagnet Logic: Computing by magnetic ordering. IEEE Nanotechnology Magazine, 2020, 14, 6-13.	1.3	5
11	Noise Immunity of Oscillatory Computing Devices. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 164-169.	1.5	3
12	Magnetization switching using topological surface states. Science Advances, 2019, 5, eaaw3415.	10.3	65
13	Roadmap on all-optical processing. Journal of Optics (United Kingdom), 2019, 21, 063001.	2.2	128
14	Computing With Networks of Oscillatory Dynamical Systems. Proceedings of the IEEE, 2019, 107, 73-89.	21.3	57
15	Design of a 40-nm CMOS integrated on-chip oscilloscope for 5-50 GHz spin wave characterization. AIP Advances, 2018, 8, 056001.	1.3	3
16	Robustness of majority gates based on nanomagnet logic. Journal of Magnetism and Magnetic Materials, 2018, 460, 432-437.	2.3	7
17	Speeding up nanomagnetic logic by DMI enhanced Pt/Co/Ir films. AIP Advances, 2018, 8, .	1.3	13
18	On the discrimination between nucleation and propagation in nanomagnetic logic devices. AIP Advances, 2018, 8, .	1.3	3

#	Article	IF	CITATIONS
19	Lens Design for Computing With Anisotropic Spin Waves. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	8
20	Simulation of coupled spin torque oscillators for pattern recognition. Journal of Applied Physics, 2018, 124, 152128.	2.5	8
21	Computing with Coupled Oscillators: Theory, Devices, and Applications. , 2018, , .		18
22	Waveguides as sources of short-wavelength spin waves for low-energy ICT applications. European Physical Journal B, 2018, 91, 1.	1.5	8
23	Experiment-based thermal micromagnetic simulations of the magnetization reversal for ns-range clocked nanomagnetic logic. AIP Advances, 2017, 7, 056625.	1.3	2
24	Perspectives of using spin waves for computing and signal processing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1471-1476.	2.1	171
25	Design of a CMOS integrated on-chip oscilloscope for spin wave characterization. AIP Advances, 2017, 7, .	1.3	9
26	Study of switching behavior of exchange-coupled nanomagnets by transverse magnetization metrology. AIP Advances, 2017, 7 , .	1.3	3
27	Nanoscale spectrum analyzer based on spin-wave interference. Scientific Reports, 2017, 7, 9245.	3.3	46
28	Design of On-Chip Readout Circuitry for Spin-Wave Devices. IEEE Magnetics Letters, 2017, 8, 1-4.	1.1	9
29	Implementation of a Nanomagnet Full Adder Circuit. , 2017, , 765-777.		0
30	Optically-inspired computing based on spin waves. , 2016, , .		2
31	Neural network based on parametrically-pumped oscillators. , 2016, , .		27
32	Design of an ultra-wideband low-noise amplifier for spin wave readout circuitry in 65 nm CMOS technology. , $2016,$, .		1
33	Exchange coupling between laterally adjacent nanomagnets. Nanotechnology, 2016, 27, 395202.	2.6	9
34	Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nature Communications, 2016, 7, 12688.	12.8	85
35	A monolithic 3D integrated nanomagnetic co-processing unit. Solid-State Electronics, 2016, 115, 74-80.	1.4	17
36	Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nature Nanotechnology, 2016, 11, 545-551.	31.5	134

#	Article	IF	CITATIONS
37	Shape-Dependent Switching Behavior of Exchange-Coupled Nanomagnet Stacks. IEEE Transactions on Magnetics, 2016, 52, 1-5.	2.1	3
38	Towards nanomagnetic logic systems: A programmable arithmetic logic unit for systolic array-based computing (Invited). , 2015 , , .		2
39	Coherent precession in arrays of dipolar-coupled soft magnetic nanodots. Journal of Applied Physics, 2015, 117, .	2.5	9
40	Non-boolean computing based on linear waves and oscillators. , 2015, , .		8
41	Short-wavelength spin-wave generation by a microstrip line. , 2015, , .		0
42	Edge-Mode Resonance-Assisted Switching of Nanomagnet Logic Elements. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	10
43	Coupled-Oscillator Associative Memory Array Operation for Pattern Recognition. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2015, 1, 85-93.	1.5	121
44	Device-level compact modeling of perpendicular Nanomagnetic Logic for benchmarking purposes. , 2015, , .		3
45	Analog circuits based on the synchronization of field-line coupled spin-torque oscillators. , 2015, , .		1
46	Emulating massively parallel non-Boolean operators on FPGA. , 2015, , .		0
47	Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices. Journal of Applied Physics, 2015, 117, .	2.5	13
48	Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots. Journal of Applied Physics, 2015, 117, 17A316.	2.5	9
49	Fabrication of pseudo-spin-valve giant magnetoresistance arrays for nanomagnet logic by liftoff and the snow-jet process. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 022801.	1.2	1
50	Ferromagnetic resonance modes of nanomagnetic logic elements. , 2015, , .		0
51	A differential inverter-based switched-capacitor oscillator in 65 nm CMOS technology. , 2015, , .		1
52	Towards nonvolatile magnetic crossbar arrays: A three-dimensional-integrated field-coupled domain wall gate with perpendicular anisotropy. Journal of Applied Physics, 2015, 117, 17D507.	2 . 5	5
53	Error analysis for ultra dense nanomagnet logic circuits. Journal of Applied Physics, 2015, 117, .	2.5	8
54	Physical Implementation of Coherently Coupled Oscillator Networks. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2015, 1, 76-84.	1.5	33

#	Article	IF	CITATIONS
55	Low-power 3D integrated ferromagnetic computing. , 2015, , .		4
56	Spin-wave-based computing devices. , 2014, , .		5
57	Domain wall assisted ordering of coupled nanomagnets. Journal of Applied Physics, 2014, 115, 17D510.	2.5	1
58	Compact modeling of perpendicular nanomagnetic logic based on threshold gates. Journal of Applied Physics, 2014, 115, 17D104.	2.5	11
59	Signal crossing in perpendicular nanomagnetic logic. Journal of Applied Physics, 2014, 115, .	2.5	29
60	Controlled domain wall pinning in nanowires with perpendicular magnetic anisotropy by localized fringing fields. Journal of Applied Physics, 2014, 115, 17D506.	2.5	12
61	Spin-wave based realization of optical computing primitives. Journal of Applied Physics, 2014, 115, .	2.5	61
62	Signal processing with optically-inspired algorithms. , 2014, , .		0
63	Nanomagnet Logic Gate With Programmable-Electrical Input. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
64	Domain-Wall-Assisted Switching of Chains of Coupled Nanomagnets. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
65	Compensation of orange-peel coupling effect in magnetic tunnel junction free layer via shape engineering for nanomagnet logic applications. Journal of Applied Physics, 2014, 115, 178902.	2.5	14
66	FPGA-based simulation of 3D light propagation. , 2014, , .		0
67	Cellular Automata designs for out of plane Nanomagnet Logic. , 2014, , .		1
68	Holographic algorithms for on-chip, non-boolean computing. , 2014, , .		1
69	Contiguous clock lines for pipelined nanomagnet logic. Journal of Computational Electronics, 2014, 13, 763-768.	2.5	1
70	Dynamic coupling of spin torque oscillators for associative memories. , 2014, , .		1
71	Towards on-chip clocking of perpendicular Nanomagnetic Logic. Solid-State Electronics, 2014, 102, 46-51.	1.4	23
72	Majority logic gate for 3D magnetic computing. Nanotechnology, 2014, 25, 335202.	2.6	58

#	Article	lF	Citations
73	Threshold Gate-Based Circuits From Nanomagnetic Logic. IEEE Nanotechnology Magazine, 2014, 13, 990-996.	2.0	11
74	1-Bit Full Adder in Perpendicular Nanomagnetic Logic using a Novel 5-Input Majority Gate. EPJ Web of Conferences, 2014, 75, 05001.	0.3	26
75	Nanomagnetic logic: from magnetic ordering to magnetic computing. , 2014, , 301-334.		7
76	Nanomagnet Logic (NML). Lecture Notes in Computer Science, 2014, , 21-32.	1.3	4
77	Nanomagnet Logic (NML). Lecture Notes in Computer Science, 2014, , 21-32.	1.3	10
78	Development of CAD tools for nanomagnetic logic devices. International Journal of Circuit Theory and Applications, 2013, 41, 634-645.	2.0	15
79	Physical unclonable functions based on crossbar arrays for cryptographic applications. International Journal of Circuit Theory and Applications, 2013, 41, 619-633.	2.0	22
80	Computational Study of Spin-Torque Oscillator Interactions for Non-Boolean Computing Applications. IEEE Transactions on Magnetics, 2013, 49, 4447-4451.	2.1	47
81	Experimental Realization of a Nanomagnet Full Adder Using Slanted-Edge Magnets. IEEE Transactions on Magnetics, 2013, 49, 4452-4455.	2.1	51
82	Experimental Demonstration of a 1-Bit Full Adder in Perpendicular Nanomagnetic Logic. IEEE Transactions on Magnetics, 2013, 49, 4464-4467.	2.1	61
83	Demonstration of Field-Coupled Input Scheme on Line of Nanomagnets. IEEE Transactions on Magnetics, 2013, 49, 4460-4463.	2.1	4
84	Towards a Signal Crossing in Double-Layer Nanomagnetic Logic. IEEE Transactions on Magnetics, 2013, 49, 4468-4471.	2.1	31
85	Switching Behavior of Sharply Pointed Nanomagnets for Logic Applications. IEEE Transactions on Magnetics, 2013, 49, 3549-3552.	2.1	13
86	Minimum-energy state guided physical design for nanomagnet logic. , 2013, , .		6
87	A Nanomagnet Logic Field-Coupled Electrical Input. IEEE Nanotechnology Magazine, 2013, 12, 734-742.	2.0	8
88	Nanomagnet Fabrication Using Nanoimprint Lithography and Electrodeposition. IEEE Nanotechnology Magazine, 2013, 12, 547-552.	2.0	7
89	Systolic Pattern Matching Hardware With Out-of-Plane Nanomagnet Logic Devices. IEEE Nanotechnology Magazine, 2013, 12, 399-407.	2.0	31
90	Nanomagnetic logic clocked in the MHz regime. , 2013, , .		19

#	Article	IF	CITATIONS
91	Information transport in field-coupled nanomagnetic logic devices. Journal of Applied Physics, 2013, 113, 17B902.	2.5	25
92	Closely spaced nanomagnets by dual e-beam exposure for low-energy nanomagnet logic. Journal of Applied Physics, 2013, 113, 178904.	2.5	4
93	Power reduction in nanomagnet logic using high-permeability dielectrics. Journal of Applied Physics, 2013, 113, 17B906.	2.5	6
94	Domain wall gate for magnetic logic and memory applications with perpendicular anisotropy. , 2013, , .		5
95	Exploring the Design of the Magnetic–Electrical Interface for Nanomagnet Logic. IEEE Nanotechnology Magazine, 2013, 12, 203-214.	2.0	9
96	FPGA-implementation of a holographic pattern-matching algorithm. , 2013, , .		0
97	Nanomagnetic logic devices fabrication using nanoimprint lithography. , 2013, , .		0
98	Programmable Input for Nanomagnetic Logic Devices. EPJ Web of Conferences, 2013, 40, 16007.	0.3	10
99	Making non-volatile nanomagnet logic non-volatile. , 2012, , .		6
100	Controlled reversal of Co/Pt Dots for nanomagnetic logic applications. Journal of Applied Physics, 2012, 111, 07A715.	2.5	40
101	Switching behavior of lithographically fabricated nanomagnets for logic applications. Journal of Applied Physics, 2012, 111, 07B911.	2.5	19
102	Clocking magnetic field-coupled devices by domain walls. Journal of Applied Physics, 2012, 111, 07E337.	2.5	13
103	Electrical input structures for nanomagnetic logic devices. Journal of Applied Physics, 2012, 111, 07E341.	2.5	16
104	Nanomagnetic Logic: Error-Free, Directed Signal Transmission by an Inverter Chain. IEEE Transactions on Magnetics, 2012, 48, 4332-4335.	2.1	44
105	Computational study of domain-wall-induced switching of Co/Pt multilayer. , 2012, , .		1
106	Magnetic Properties of Enhanced Permeability Dielectrics for Nanomagnetic Logic Circuits. IEEE Transactions on Magnetics, 2012, 48, 3292-3295.	2.1	15
107	Domain-Wall Assisted Switching of Single-Domain Nanomagnets. IEEE Transactions on Magnetics, 2012, 48, 3563-3566.	2.1	14
108	Modeling interaction between Co/Pt nanomagnets and Permalloy domain wall for Nanomagnet Logic. , 2012, , .		1

#	Article	IF	CITATIONS
109	Characterization of the bistable ring PUF., 2012, , .		3
110	Direct Measurement of Magnetic Coupling Between Nanomagnets for Nanomagnetic Logic Applications. IEEE Transactions on Magnetics, 2012, 48, 4402-4405.	2.1	13
111	Power reduction in nanomagnetic logic clocking through high permeability dielectrics., 2012,,.		1
112	Majority Gate for Nanomagnetic Logic With Perpendicular Magnetic Anisotropy. IEEE Transactions on Magnetics, 2012, 48, 4336-4339.	2.1	77
113	Simulation of Magnetization Reversal and Domain-Wall Trapping in Submicron Permalloy Wires With Different Wire Geometries. IEEE Nanotechnology Magazine, 2012, 11, 682-686.	2.0	15
114	Nanomagnet Logic from Partially Irradiated Co/Pt Nanomagnets. IEEE Nanotechnology Magazine, 2012, 11, 97-104.	2.0	24
115	An Associative Memory with oscillatory CNN arrays using spin torque oscillator cells and spin-wave interactions architecture and End-to-end Simulator. , 2012 , , .		15
116	Design of a systolic pattern matcher for Nanomagnet Logic. , 2012, , .		3
117	Boolean and non-boolean nearest neighbor architectures for out-of-plane nanomagnet logic., 2012,,.		8
118	Spin torque oscillator models for applications in associative memories. , 2012, , .		30
119	Synchronization in cellular spin torque oscillator arrays. , 2012, , .		14
120	Modeling of coupled spin torque oscillators for applications in associative memories. , 2012, , .		15
121	Applications of High-Capacity Crossbar Memories in Cryptography. IEEE Nanotechnology Magazine, 2011, 10, 489-498.	2.0	57
122	The Bistable Ring PUF: A new architecture for strong Physical Unclonable Functions., 2011,,.		156
123	Error analysis of Co/Pt multilayer based Nanomagnetic Logic. , 2011, , .		4
124	Nanomagnetic Logic: Demonstration of directed signal flow for field-coupled computing devices. , 2011, , .		28
125	Field-coupled computing: Investigating the properties of ferromagnetic nanodots. Solid-State Electronics, 2011, 65-66, 240-245.	1.4	9
126	Linear Circuit Models for On-Chip Quantum Electrodynamics. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 65-71.	4.6	13

#	Article	IF	CITATIONS
127	Nanomagnet logic: progress toward system-level integration. Journal of Physics Condensed Matter, 2011, 23, 493202.	1.8	144
128	Nanomagnetic logic: compact modeling of field-coupled computing devices for system investigations. Journal of Computational Electronics, 2011, 10, 352-359.	2.5	18
129	Implementation of a nanomagnetic full adder circuit. , 2011, , .		37
130	Nanomagnetic logic: Investigations on field-coupled computing devices by experiment-based compact modeling., 2011,,.		1
131	CIRCUIT-BASED APPROACHES TO SIMPL SYSTEMS. Journal of Circuits, Systems and Computers, 2011, 20, 107-123.	1.5	8
132	On-chip Extraordinary Hall-effect sensors for characterization of nanomagnetic logic devices. Solid-State Electronics, 2010, 54, 1027-1032.	1.4	25
133	Behavior of Nanomagnet Logic in the presence of thermal noise. , 2010, , .		68
134	Random pn-junctions for physical cryptography. Applied Physics Letters, 2010, 96, .	3.3	22
135	Development of a highly parallelized micromagnetic simulator on graphics processors. , 2010, , .		4
136	Computational model of partially irradiated nanodots for field-coupled computing devices. , 2010, , .		3
137	Magnetic excitations for information processing. , 2010, , .		0
138	Ultra-low volume ferromagnetic nanodots for field-coupled computing devices. , 2010, , .		7
139	Towards Electrical, Integrated Implementations of SIMPL Systems. Lecture Notes in Computer Science, 2010, , 277-292.	1.3	17
140	Security Applications of Diodes with Unique Current-Voltage Characteristics. Lecture Notes in Computer Science, 2010, , 328-335.	1.3	24
141	Field-coupled nanomagnets for interconnect-free nonvolatile computing. , 2009, , .		29
142	Modeling of circuits and architectures for molecular electronics. Journal of Computational Electronics, 2009, 8, 410-426.	2.5	2
143	Clocking Schemes for Field Coupled Devices from Magnetic Multilayers. , 2009, , .		17
144	Conjugated 12 nm long oligomers as molecular wires in nanoelectronics. Journal of Materials Chemistry, 2009, 19, 3899.	6.7	28

#	Article	IF	CITATIONS
145	Characterizing magnetic field-coupled computing devices by the Extraordinary Hall-effect., 2009,,.		10
146	Read-Out Design Rules for Molecular Crossbar Architectures. IEEE Nanotechnology Magazine, 2009, 8, 369-374.	2.0	38
147	Low Temperature Rectifying Junctions for Crossbar Non-Volatile Memory Devices. , 2009, , .		21
148	Field-coupled computing in magnetic multilayers. Journal of Computational Electronics, 2008, 7, 454-457.	2.5	23
149	Simulation of ZnO diodes for application in non-volatile crossbar memories. Journal of Computational Electronics, 2008, 7, 146-150.	2.5	24
150	Analysis of the hysteretic behavior of silicon nanowire transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 27-30.	0.8	10
151	Magnetic Ordering of Focused-Ion-Beam Structured Cobalt-Platinum Dots for Field-Coupled Computing. IEEE Nanotechnology Magazine, 2008, 7, 316-320.	2.0	43
152	Extraordinary Hall-effect sensor in split-current design for readout of magnetic field-coupled logic devices. , 2008, , .		7
153	Magnetic Quantum-Dot Cellular Automata: Recent Developments and Prospects. Journal of Nanoelectronics and Optoelectronics, 2008, 3, 55-68.	0.5	102
154	Simulation of Coplanar Devices Accessing Nano Systems. Springer Proceedings in Physics, 2008, , 361-374.	0.2	0
155	Magnetic Logic based on Field-Coupled Nanomagnets. , 2007, , .		0
156	Design and Simulation of Novel Architectures for Nanodevices. , 2007, , .		2
157	Focused ion beam structured Co/Pt multilayers for field-coupled magnetic computing. Materials Research Society Symposia Proceedings, 2007, 998, 1.	0.1	6
158	Circuit modelling of coupling between nanosystems and microwave coplanar waveguides. International Journal of Circuit Theory and Applications, 2007, 35, 315-324.	2.0	10
159	Activity in field-coupled nanomagnet arrays. International Journal of Circuit Theory and Applications, 2007, 35, 281-293.	2.0	79
160	The simulation of molecular and organic devices: a critical review and look at future developments. Applied Physics A: Materials Science and Processing, 2007, 87, 593-598.	2.3	7
161	Micromagnetic simulation of current-driven domain wall propagation. Journal of Computational Electronics, 2007, 6, 121-124.	2.5	2
162	Circuit modeling of flux qubits interacting with superconducting waveguides. Journal of Computational Electronics, 2007, 6, 105-108.	2.5	2

#	Article	IF	CITATIONS
163	Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata. Science, 2006, 311, 205-208.	12.6	877
164	Flux-Closure Magnetic States in Triangular Cobalt Ring Elements. IEEE Transactions on Magnetics, 2006, 42, 3641-3644.	2.1	15
165	Magnetic Quantum-Dot Cellular Automata (MQCA). , 2006, , 269-276.		7
166	Field-coupled nanomagnets for logic applications. , 2005, 5838, 162.		4
167	Simulation of molecular devices and architectures: state of the art and future challenges (Invited) Tj ETQq1 1 0.78	4314 rgBT	Г <u>/</u> Overloc <mark>k</mark>
168	Magnetic QCA systems. Microelectronics Journal, 2005, 36, 619-624.	2.0	99
169	Simulation of Power Gain and Dissipation in Field-Coupled Nanomagnets. Journal of Computational Electronics, 2005, 4, 105-110.	2.5	57
170	Restoration of Magnetization Distributions from Joint Magnetic Force Microscopy Measurements and Micromagnetic Simulations. Journal of Computational Electronics, 2003, 2, 225-229.	2.5	5
171	Investigation of shape-dependent switching of coupled nanomagnets. Superlattices and Microstructures, 2003, 34, 513-518.	3.1	58
172	A computing architecture composed of field-coupled single domain nanomagnets clocked by magnetic field. International Journal of Circuit Theory and Applications, 2003, 31, 67-82.	2.0	64
173	Controlled domain wall motion in micron-scale permalloy square rings. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 240-245.	2.7	20
174	THE ROLE OF FIELD COUPLING IN NANO-SCALE CELLULAR NONLINEAR NETWORKS. International Journal of Neural Systems, 2003, 13, 387-395.	5.2	2
175	Nanocomputing by field-coupled nanomagnets. IEEE Nanotechnology Magazine, 2002, 1, 209-213.	2.0	185
176	Simulation of Field Coupled Computing Architectures Based on Magnetic Dot Arrays. Journal of Computational Electronics, 2002, 1, 87-91.	2.5	54
177	Computing architecture composed of next-neighbour-coupled optically pumped nanodevices. International Journal of Circuit Theory and Applications, 2001, 29, 73-91.	2.0	14
178	Field-coupled devices for nanoelectronic integrated circuits. , 0, , .		2
179	The role of field coupling in nano-scale cellular nonlinear networks. , 0, , .		1
180	Signal processing with coupled ferromagnetic dots., 0,,.		1

#	Article	IF	CITATIONS
181	Investigation of antiferromagnetic ordering along chains of coupled nanomagnets. , 0, , .		7
182	Application of mesoscopic magnetic rings for logic devices. , 0, , .		6
183	Power dissipation in nanomagnetic logic devices. , 0, , .		22