

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240021/publications.pdf Version: 2024-02-01

YI CAO

#	Article	IF	CITATIONS
1	A highly stretchable autonomous self-healing elastomer. Nature Chemistry, 2016, 8, 618-624.	6.6	1,133
2	Polyprotein of GB1 is an ideal artificial elastomeric protein. Nature Materials, 2007, 6, 109-114.	13.3	227
3	The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nature Immunology, 2015, 16, 991-999.	7.0	200
4	A Highly Stretchable and Autonomous Selfâ€Healing Polymer Based on Combination of Pt··À·Pt and π–π Interactions. Macromolecular Rapid Communications, 2016, 37, 1667-1675.	2.0	199
5	Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. Journal of Materials Chemistry, 2006, 16, 1536.	6.7	168
6	Maleimide–thiol adducts stabilized through stretching. Nature Chemistry, 2019, 11, 310-319.	6.6	154
7	Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nature Communications, 2018, 9, 620.	5.8	145
8	Rigid helical-like assemblies from a self-aggregating tripeptide. Nature Materials, 2019, 18, 503-509.	13.3	133
9	Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 12217-12226.	4.0	132
10	Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nature Communications, 2020, 11, 4032.	5.8	129
11	Hydrogel tapes for fault-tolerant strong wet adhesion. Nature Communications, 2021, 12, 7156.	5.8	122
12	Single Molecule Evidence for the Adaptive Binding of DOPA to Different Wet Surfaces. Langmuir, 2014, 30, 4358-4366.	1.6	116
13	Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Science Advances, 2020, 6, eaaz9531.	4.7	111
14	Facile access to B-doped solid-state fluorescent carbon dots toward light emitting devices and cell imaging agents. Journal of Materials Chemistry C, 2015, 3, 6668-6675.	2.7	109
15	Polymer‣upramolecular Polymer Doubleâ€Network Hydrogel. Advanced Functional Materials, 2016, 26, 9044-9052.	7.8	106
16	Nonmechanical Protein Can Have Significant Mechanical Stability. Angewandte Chemie - International Edition, 2006, 45, 642-645.	7.2	104
17	Electrically Controllable Actuators Based on Supramolecular Peptide Hydrogels. Advanced Functional Materials, 2016, 26, 9053-9062.	7.8	102
18	Gadolinium-based nanoscale MRI contrast agents for tumor imaging. Journal of Materials Chemistry B, 2017, 5, 3431-3461.	2.9	92

#	Article	IF	CITATIONS
19	Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Research, 2018, 11, 5556-5565.	5.8	91
20	A label-free and portable graphene FET aptasensor for children blood lead detection. Scientific Reports, 2016, 6, 21711.	1.6	88
21	Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity. ACS Nano, 2020, 14, 1694-1706.	7.3	86
22	Living materials fabricated via gradient mineralization of light-inducible biofilms. Nature Chemical Biology, 2021, 17, 351-359.	3.9	85
23	Molecular design principles of Lysine-DOPA wet adhesion. Nature Communications, 2020, 11, 3895.	5.8	83
24	Photo-Cross-Linking Approach to Engineering Small Tyrosine-Containing Peptide Hydrogels with Enhanced Mechanical Stability. Langmuir, 2013, 29, 13299-13306.	1.6	82
25	Near-Infrared Light-Driven Photoelectrochemical Aptasensor Based on the Upconversion Nanoparticles and TiO ₂ /CdTe Heterostructure for Detection of Cancer Cells. ACS Applied Materials & Interfaces, 2016, 8, 25834-25839.	4.0	82
26	Bioinspired Stable and Photoluminescent Assemblies for Power Generation. Advanced Materials, 2019, 31, e1807481.	11.1	82
27	AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice. Scientific Reports, 2017, 7, 43245.	1.6	72
28	Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Biomaterials Science, 2018, 6, 2487-2495.	2.6	72
29	Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator. Nature Nanotechnology, 2008, 3, 512-516.	15.6	68
30	Single-Molecule Mechanics of Catechol-Iron Coordination Bonds. ACS Biomaterials Science and Engineering, 2017, 3, 979-989.	2.6	67
31	Preparation of ceria–zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. Journal of Colloid and Interface Science, 2015, 450, 404-416.	5.0	65
32	Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16.	8.3	62
33	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	7.3	61
34	3D Bioprinting of Bone Marrow Mesenchymal Stem Cell-Laden Silk Fibroin Double Network Scaffolds for Cartilage Tissue Repair. Bioconjugate Chemistry, 2020, 31, 1938-1947.	1.8	59
35	Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS Nano, 2020, 14, 7025-7037.	7.3	59
36	100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Letters, 2020, 9, 512-524.	2.3	58

Υι Ολο

#	Article	IF	CITATIONS
37	The molecular mechanisms underlying mussel adhesion. Nanoscale Advances, 2019, 1, 4246-4257.	2.2	57
38	Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery. Nano Research, 2019, 12, 115-119.	5.8	54
39	New insights into the structure of a CeO ₂ –ZrO ₂ –Al ₂ O ₃ composite and its influence on the performance of the supported Pd-only three-way catalyst. Catalysis Science and Technology, 2015, 5. 4488-4500.	2.1	51
40	Spatiotemporal Control of Supramolecular Self-Assembly and Function. ACS Applied Materials & amp; Interfaces, 2017, 9, 10012-10018.	4.0	51
41	Capturing Volatile Nitrosamines in Gas Stream by Zeolites:  Why and How. Journal of Physical Chemistry C, 2007, 111, 4347-4357.	1.5	50
42	An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration. Journal of Materials Chemistry B, 2020, 8, 4237-4244.	2.9	50
43	Printable Fluorescent Hydrogels Based on Self-Assembling Peptides. Scientific Reports, 2017, 7, 9691.	1.6	49
44	Sprayâ€Painted Hydrogel Coating for Marine Antifouling. Advanced Materials Technologies, 2021, 6, 2000911.	3.0	49
45	Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide–Metal Organic Framework. Journal of the American Chemical Society, 2022, 144, 3468-3476.	6.6	49
46	Rigid Tightly Packed Amino Acid Crystals as Functional Supramolecular Materials. ACS Nano, 2019, 13, 14477-14485.	7.3	48
47	Principles Governing Catalytic Activity of Self-Assembled Short Peptides. Journal of the American Chemical Society, 2019, 141, 223-231.	6.6	47
48	Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Science Advances, 2020, 6, .	4.7	47
49	Extremely Small Iron Oxide Nanoparticle-Encapsulated Nanogels as a Glutathione-Responsive T ₁ Contrast Agent for Tumor-Targeted Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2020, 12, 26973-26981.	4.0	47
50	NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. Journal of Nanobiotechnology, 2021, 19, 64.	4.2	46
51	Removal of volatile nitrosamines with copper modified zeolitesPreliminary communication: see ref. 42 New Journal of Chemistry, 2004, 28, 244.	1.4	45
52	Two approaches for the engineering of homogeneous small-molecule hydrogels. Soft Matter, 2013, 9, 4672.	1.2	45
53	Aptamer-Modified Temperature-Sensitive Liposomal Contrast Agent for Magnetic Resonance Imaging. Biomacromolecules, 2015, 16, 2618-2623.	2.6	45
54	Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration. Materials Science and Engineering C, 2019, 96, 841-849.	3.8	45

#	Article	IF	CITATIONS
55	Engineering tandem modular protein based reversible hydrogels. Chemical Communications, 2008, , 4144.	2.2	44
56	A Highly Stretchable, Tough, Fast Self-Healing Hydrogel Based on Peptide–Metal Ion Coordination. Biomimetics, 2019, 4, 36.	1.5	44
57	Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Materials and Design, 2020, 189, 108492.	3.3	44
58	Solvent-free surface functionalized SBA-15 as a versatile trap of nitrosamines. Journal of Materials Chemistry, 2006, 16, 1520.	6.7	43
59	The Development of Chiral Nanoparticles to Target NK Cells and CD8 ⁺ T Cells for Cancer Immunotherapy. Advanced Materials, 2022, 34, e2109354.	11.1	41
60	Multifunctional Nanofibers for Specific Purification and Release of CTCs. ACS Sensors, 2017, 2, 547-552.	4.0	40
61	Self-Assembled Nanofibers for Strong Underwater Adhesion: The Trick of Barnacles. ACS Applied Materials & Interfaces, 2018, 10, 25017-25025.	4.0	40
62	Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. Journal of Advanced Research, 2021, 30, 75-84.	4.4	40
63	Stretchable and self-healable hydrogel artificial skin. National Science Review, 2022, 9, .	4.6	40
64	Accelerated charge transfer in water-layered peptide assemblies. Energy and Environmental Science, 2020, 13, 96-101.	15.6	39
65	Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Research, 2017, 27, 505-525.	5.7	38
66	Hidden complexity of synergistic roles of Dopa and lysine for strong wet adhesion. Materials Chemistry Frontiers, 2017, 1, 2664-2668.	3.2	37
67	Dual-Stimuli-Responsive Multifunctional Gd ₂ Hf ₂ O ₇ Nanoparticles for MRI-Guided Combined Chemo-/Photothermal-/Radiotherapy of Resistant Tumors. ACS Applied Materials & Interfaces, 2020, 12, 35928-35939.	4.0	37
68	Single-molecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin. Nature Communications, 2014, 5, 4623.	5.8	36
69	Designing the mechanical properties of peptide-based supramolecular hydrogels for biomedical applications. Science China: Physics, Mechanics and Astronomy, 2014, 57, 849-858.	2.0	36
70	Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomaterialia, 2021, 128, 1-20.	4.1	36
71	A low-swelling and toughened adhesive hydrogel with anti-microbial and hemostatic capacities for wound healing. Journal of Materials Chemistry B, 2022, 10, 915-926.	2.9	36
72	Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers. Nature Communications, 2022, 13, 2279.	5.8	35

#	Article	IF	CITATIONS
73	Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers. ACS Nano, 2017, 11, 194-203.	7.3	34
74	Hydrogels With Tunable Mechanical Properties Based on Photocleavable Proteins. Frontiers in Chemistry, 2020, 8, 7.	1.8	34
75	Effects of biowaste-derived biochar on the electron transport efficiency during anaerobic acid orange 7 removal. Bioresource Technology, 2021, 320, 124295.	4.8	34
76	Defects in a liver-bone axis contribute to hepatic osteodystrophy disease progression. Cell Metabolism, 2022, 34, 441-457.e7.	7.2	34
77	A genetically encoded copper(i) sensor based on engineered structural distortion of EGFP. Chemical Communications, 2012, 48, 3890.	2.2	33
78	Promoting electron transfer to enhance anaerobic treatment of azo dye wastewater with adding Fe(OH)3. Bioresource Technology, 2017, 245, 138-144.	4.8	33
79	Poly(glycerol) Used for Constructing Mixed Polymeric Micelles as T1 MRI Contrast Agent for Tumor-Targeted Imaging. Biomacromolecules, 2017, 18, 150-158.	2.6	33
80	Multiporous Supramolecular Microspheres for Artificial Photosynthesis. Chemistry of Materials, 2017, 29, 4454-4460.	3.2	32
81	Singleâ€Molecule Force Spectroscopy Reveals Multiple Binding Modes between DOPA and Different Rutile Surfaces. ChemPhysChem, 2017, 18, 1466-1469.	1.0	29
82	Semi-degradable porous poly (vinyl alcohol) hydrogel scaffold for cartilage repair: Evaluation of the initial and cell-cultured tribological properties. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 163-172.	1.5	29
83	Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics. Angewandte Chemie - International Edition, 2021, 60, 22332-22338.	7.2	28
84	Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
85	The Physical Chemistry for the Self-assembly of Peptide Hydrogels. Chinese Journal of Polymer Science (English Edition), 2018, 36, 366-378.	2.0	27
86	Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides. ACS Macro Letters, 2019, 8, 1383-1390.	2.3	27
87	Atomic mapping of periodic dipole waves in ferroelectric oxide. Science Advances, 2021, 7, .	4.7	27
88	Engineering Photoresponsive Ligand Tethers for Mechanical Regulation of Stem Cells. Advanced Materials, 2021, 33, e2105765.	11.1	27
89	Injectable thioketal-containing hydrogel dressing accelerates skin wound healing with the incorporation of reactive oxygen species scavenging and growth factor release. Biomaterials Science, 2021, 10, 100-113.	2.6	27
90	Novel Amorphous Functional Materials for Trapping Nitrosamines. Environmental Science & Technology, 2005, 39, 7254-7259.	4.6	26

#	Article	IF	CITATIONS
91	Neutral red as a specific light-up fluorescent probe for i-motif DNA. Chemical Communications, 2016, 52, 14330-14333.	2.2	26
92	Functional Hyperbranched Polylysine as Potential Contrast Agent Probes for Magnetic Resonance Imaging. Biomacromolecules, 2016, 17, 2302-2308.	2.6	25
93	Geometrical Confinement of Gadolinium Oxide Nanoparticles in Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overl <i>T</i> ₁ Magnetic Resonance Imaging Contrast Agent. ACS Applied Materials & amp; Interfaces, 2018, 10, 26099-26107.	ock 10 Tf 4.0	50 672 Td (g 24
94	Cutting Edge: Transcription Factor BCL6 Is Required for the Generation, but Not Maintenance, of Memory CD8+ T Cells in Acute Viral Infection. Journal of Immunology, 2019, 203, 323-327.	0.4	24
95	Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nature Communications, 2019, 10, 5256.	5.8	24
96	Hidden Intermediate State and Second Pathway Determining Folding and Unfolding Dynamics of GB1 Protein at Low Forces. Physical Review Letters, 2020, 125, 198101.	2.9	24
97	Fabrication of an injectable BMSC-laden double network hydrogel based on silk fibroin/PEG for cartilage repair. Journal of Materials Chemistry B, 2020, 8, 5845-5848.	2.9	24
98	An Injectable Self-Healing Protein Hydrogel with Multiple Dissipation Modes and Tunable Dynamic Response. Biomacromolecules, 2019, 20, 4199-4207.	2.6	23
99	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
100	<i>In Situ</i> Forming Cellulose Nanofibril-Reinforced Hyaluronic Acid Hydrogel for Cartilage Regeneration. Biomacromolecules, 2021, 22, 5097-5107.	2.6	22
101	Peptide Coassembly to Enhance Piezoelectricity for Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 6538-6546.	4.0	22
102	P/N/O co-doped carbonaceous material based supercapacitor with voltage up to 1.9 V in aqueous electrolyte. RSC Advances, 2014, 4, 55971-55979.	1.7	21
103	Biodegradable Nanoglobular Magnetic Resonance Imaging Contrast Agent Constructed with Host–Guest Self-Assembly for Tumor-Targeted Imaging. ACS Applied Materials & Interfaces, 2018, 10, 26906-26916.	4.0	21
104	Direct Measurement of Length Scale Dependence of the Hydrophobic Free Energy of a Single Collapsed Polymer Nanosphere. Physical Review Letters, 2019, 122, 047801.	2.9	21
105	Regulating Mechanical Properties of <scp>Polymerâ€Supramolecular Doubleâ€Network</scp> Hydrogel by Supramolecular Selfâ€assembling Structures. Chinese Journal of Chemistry, 2021, 39, 2711-2717.	2.6	21
106	An integrated artificial photosynthesis system based on peptide nanotubes. Nanoscale, 2014, 6, 7832-7837.	2.8	20
107	Mg ²⁺ â€Dependent High Mechanical Anisotropy of Threeâ€Wayâ€Junction pRNA as Revealed by Singleâ€Molecule Force Spectroscopy. Angewandte Chemie - International Edition, 2017, 56, 9376-9380.	7.2	20
108	An ester bond underlies the mechanical strength of a pathogen surface protein. Nature Communications, 2021, 12, 5082.	5.8	20

#	Article	IF	CITATIONS
109	Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels. ACS Applied Bio Materials, 2021, 4, 8597-8606.	2.3	20
110	Strong and Reversible Covalent Double Network Hydrogel Based on Forceâ€Coupled Enzymatic Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
111	Concentrated Coverage Path Planning Algorithm of UAV Formation for Aerial Photography. IEEE Sensors Journal, 2022, 22, 11098-11111.	2.4	20
112	Hyperbranched poly(glycerol) as a T ₁ contrast agent for tumor-targeted magnetic resonance imaging in vivo. Polymer Chemistry, 2017, 8, 1104-1113.	1.9	19
113	A pH responsive AIE probe for enzyme assays. Analyst, The, 2018, 143, 741-746.	1.7	19
114	Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells. Journal of Materials Chemistry B, 2021, 9, 677-682.	2.9	18
115	Synthesis and photoluminescence modulating of polypyrrole fluorescent nano-spheres/dots. RSC Advances, 2016, 6, 23737-23745.	1.7	17
116	Directional mechanical stability of Bacteriophage φ29 motor's 3WJ-pRNA: Extraordinary robustness along portal axis. Science Advances, 2017, 3, e1601684.	4.7	17
117	Tumor Acid Microenvironment-Triggered Self-Assembly of ESIONPs for T ₁ /T ₂ Switchable Magnetic Resonance Imaging. ACS Applied Bio Materials, 2020, 3, 7752-7761.	2.3	17
118	Singleâ€Molecule Force Spectroscopy Reveals Selfâ€Assembly Enhanced Surface Binding of Hydrophobins. Chemistry - A European Journal, 2018, 24, 9224-9228.	1.7	16
119	A Force‧pectroscopyâ€Based Singleâ€Molecule Metalâ€Binding Assay. ChemPhysChem, 2009, 10, 1450-1454.	1.0	15
120	Synergistic regulation of longitudinal and transverse relaxivity of extremely small iron oxide nanoparticles (ESIONPs) using pH-responsive nanoassemblies. Nanoscale, 2020, 12, 17502-17516.	2.8	15
121	Tumor Microenvironment-Responsive and Catalytic Cascade-Enhanced Nanocomposite for Tumor Thermal Ablation Synergizing with Chemodynamic and Chemotherapy. ACS Applied Bio Materials, 2020, 3, 3880-3893.	2.3	15
122	Biophysical Approaches for Applying and Measuring Biological Forces. Advanced Science, 2022, 9, e2105254.	5.6	15
123	Engineering Reversible Hydrogels for <scp>3D</scp> Cell Culture and Release Using Diselenide Catalyzed Fast Disulfide Formation. Chinese Journal of Chemistry, 2022, 40, 1578-1584.	2.6	15
124	Preparation of linear poly(glycerol) as a T ₁ contrast agent for tumor-targeted magnetic resonance imaging. Journal of Materials Chemistry B, 2016, 4, 6716-6725.	2.9	14
125	Distinct Binding Interactions of $\hat{I}\pm5\hat{I}^21$ -Integrin and Proteoglycans with Fibronectin. Biophysical Journal, 2019, 117, 688-695.	0.2	14
126	Tuning of the dynamics of metal ion crosslinked hydrogels by network structures. Soft Matter, 2019, 15, 4423-4427.	1.2	14

#	Article	IF	CITATIONS
127	Development of an Aptamer-Conjugated Polyrotaxane-Based Biodegradable Magnetic Resonance Contrast Agent for Tumor-Targeted Imaging. ACS Applied Bio Materials, 2019, 2, 406-416.	2.3	14
128	Isolation and characterization of a mitogen-activated protein kinase gene in the halotolerant alga Dunaliella salina. Journal of Applied Phycology, 2008, 20, 13-17.	1.5	13
129	Non-covalent assembled laccase-graphene composite: Property, stability and performance in beta-blocker removal. Environmental Pollution, 2019, 252, 907-916.	3.7	13
130	Redox-triggered aggregation of ESIONPs with switchable <i>T</i> ₁ to <i>T</i> ₂ contrast effect for <i>T</i> ₂ -weighted magnetic resonance imaging. Journal of Materials Chemistry B, 2021, 9, 1821-1832.	2.9	13
131	A poly(ε-caprolactone)–poly(glycerol)–poly(ε-caprolactone) triblock copolymer for designing a polymeric micelle as a tumor targeted magnetic resonance imaging contrast agent. Journal of Materials Chemistry B, 2017, 5, 8408-8416.	2.9	11
132	Fabrication of injectable hydrogels <i>via</i> bio-orthogonal chemistry for tissue engineering. New Journal of Chemistry, 2020, 44, 11420-11432.	1.4	11
133	Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Research, 2022, 15, 4294-4301.	5.8	11
134	Genetically encoded red fluorescent copper(I) sensors for cellular copper(I) imaging. Biochemical and Biophysical Research Communications, 2014, 443, 894-898.	1.0	10
135	Oligoethylenimine grafted PEGylated poly(aspartic acid) as a macromolecular contrast agent: properties and in vivo studies. Journal of Materials Chemistry B, 2016, 4, 3324-3330.	2.9	10
136	Recruitment of Brd3 and Brd4 to acetylated chromatin is essential for proinflammatory cytokine-induced matrix-degrading enzyme expression. Journal of Orthopaedic Surgery and Research, 2019, 14, 59.	0.9	10
137	Thickness Dependence of Oxygen Vacancy Ordering in Strained LaCoO _{3–<i>x</i>} Thin Films. Journal of Physical Chemistry C, 2020, 124, 12492-12501.	1.5	10
138	Formation of α-helix-based twisted ribbon-like fibrils from ionic-complementary peptides. Chemical Communications, 2011, 47, 7413.	2.2	9
139	Gd2O3 and GH combined with red blood cells to improve the sensitivity of contrast agents for cancer targeting MR imaging. Biomaterials Science, 2017, 5, 46-49.	2.6	9
140	Atomistic simulation of the coupled adsorption and unfolding of protein GB1 on the polystyrenes nanoparticle surface. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	9
141	Aptamer-Targeted Magnetic Resonance Imaging Contrast Agents and Their Applications. Journal of Nanoscience and Nanotechnology, 2018, 18, 3759-3774.	0.9	9
142	Generative Steganography Based on Long Readable Text Generation. IEEE Transactions on Computational Social Systems, 2024, , 1-11.	3.2	9
143	Preparation, characterization and application of polyaniline/epoxide polysiloxane composite films. Chinese Journal of Polymer Science (English Edition), 2015, 33, 732-742.	2.0	8
144	PEGylated chitosan grafted with polyamidoamine-dendron as tumor-targeted magnetic resonance imaging contrast agent. New Journal of Chemistry, 2017, 41, 7689-7696.	1.4	8

Υι Οαο

#	Article	IF	CITATIONS
145	Mechanochemical Lithography. Journal of the American Chemical Society, 2022, 144, 9949-9958.	6.6	8
146	Compressive properties and creep resistance of a novel, porous, semidegradable poly(vinyl) Tj ETQq0 0 0 rgBT / Polymer Science, 2014, 131, .	Overlock 1 1.3	0 Tf 50 707 T 7
147	Facile Synthesis of Water-Dispersed Photoluminescent Gold(I)-Alkanethiolate Nanoparticles via Aggregation-Induced Emission and Their Application in Cell Imaging. ACS Applied Nano Materials, 2018, 1, 6641-6648.	2.4	7
148	Bi-directional regulation of cartilage metabolism by inhibiting BET proteins—analysis of the effect of I-BET151 on human chondrocytes and murine joints. Journal of Orthopaedic Surgery and Research, 2018, 13, 118.	0.9	7
149	Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS Applied Materials & Interfaces, 2020, 12, 45192-45201.	4.0	7
150	Gadolinium(III)-based Polymeric Magnetic Resonance Imaging Agents for Tumor Imaging. Current Medicinal Chemistry, 2018, 25, 2910-2937.	1.2	7
151	Regulating the Homogeneity of Thiol-Maleimide Michael-Type Addition-Based Hydrogels Using Amino Biomolecules. Gels, 2021, 7, 206.	2.1	7
152	Inorganic nanomaterial-reinforced hydrogel membrane as an artificial periosteum. Applied Materials Today, 2022, 28, 101532.	2.3	7
153	New Attempt to Reduce the Harm of Smoking: Reducing the Nitrosamines Level in Tobacco Smoke by Microwave Irradiation. Clean - Soil, Air, Water, 2009, 37, 31-38.	0.7	6
154	Hierarchical Composites to Reduce N-Nitrosamines in Cigarette Smoke. Materials, 2015, 8, 1325-1340.	1.3	6
155	Oligoethylenimineâ€grafted chitosan as enhanced <i>T</i> ₁ contrast agent for in vivo targeted tumor MRI. Journal of Magnetic Resonance Imaging, 2016, 44, 23-29.	1.9	6
156	Biocleavable Oligolysine-Grafted Poly(disulfide amine)s as Magnetic Resonance Imaging Probes. Bioconjugate Chemistry, 2016, 27, 151-158.	1.8	6
157	Design and Synthesis of a Dimethylindole Red Trimer: A New Lightâ€Up Redâ€Emitting Fluorescent Probe for Gâ€Quadruplexes. ChemistrySelect, 2017, 2, 2783-2788.	0.7	6
158	A fumigaclavine C isostere alleviates Th1-mediated experimental colitis via competing with IFN-γ for binding to IFN-γ receptor 1. Biochemical Pharmacology, 2017, 123, 63-72.	2.0	6
159	Engineered Recombinant Proteins for Aqueous Ultrasonic Exfoliation and Dispersion of Biofunctionalized 2D Materials. Chemistry - A European Journal, 2019, 25, 7991-7997.	1.7	6
160	A folic acid modified polystyrene nanosphere surface for circulating tumor cell capture. Analytical Methods, 2019, 11, 5718-5723.	1.3	6
161	Smart Adhesive Peptide Nanofibers for Cell Capture and Release. ACS Biomaterials Science and Engineering, 2020, 6, 6800-6807.	2.6	6
162	Strong and Injectable Hydrogels Based on Multivalent Metal Ion-Peptide Cross-linking. Chemical Research in Chinese Universities, 2020, 36, 962-969.	1.3	6

#	Article	IF	CITATIONS
163	Astral hydrogels mimic tissue mechanics by aster-aster interpenetration. Nature Communications, 2021, 12, 4277.	5.8	6
164	Multi-arm star-branched polymer as an efficient contrast agent for tumor-targeted magnetic resonance imaging. Journal of Materials Chemistry B, 2017, 5, 5001-5008.	2.9	6
165	Modulating vectored non-covalent interactions for layered assembly with engineerable properties. Bio-Design and Manufacturing, 2022, 5, 529-539.	3.9	6
166	Tuning Strain Stiffening of Protein Hydrogels by Charge Modification. International Journal of Molecular Sciences, 2022, 23, 3032.	1.8	5
167	Mg ²⁺ â€Dependent High Mechanical Anisotropy of Threeâ€Wayâ€Junction pRNA as Revealed by Singleâ€Molecule Force Spectroscopy. Angewandte Chemie, 2017, 129, 9504-9508.	1.6	4
168	Correction: A pH responsive AIE probe for enzyme assays. Analyst, The, 2018, 143, 784-784.	1.7	4
169	Understanding and Regulating Cell-Matrix Interactions Using Hydrogels of Designable Mechanical Properties. Journal of Biomedical Nanotechnology, 2021, 17, 149-168.	0.5	4
170	Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics. Angewandte Chemie, 2021, 133, 22506-22512.	1.6	4
171	Short Peptides Derived from a Block Copolymer-like Barnacle Cement Protein Self-Assembled into Diverse Supramolecular Structures. Biomacromolecules, 2022, 23, 2019-2030.	2.6	4
172	Dimerization of Cell-Adhesion Molecules Can Increase Their Binding Strength. Langmuir, 2017, 33, 1398-1404.	1.6	3
173	Synthetic asters as elastic and radial skeletons. Nature Communications, 2019, 10, 4954.	5.8	3
174	Spinodal Decomposition-Driven Endurable Resistive Switching in Perovskite Oxides. ACS Applied Materials & Interfaces, 2021, 13, 31001-31009.	4.0	3
175	Coâ€Assembly Induced Solid‣tate Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie, 2022, 134, .	1.6	3
176	Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	2
177	Selfâ€Assembled Quadruplexâ€Inspired Peptide Nucleic Acid Tetramer for Artificial Photosynthesis. ChemPhotoChem, 2020, 4, 5154-5158.	1.5	2
178	Activatable peptide-based nanoprobes for multimodal imaging in vivo. Nano Express, 2021, 2, 041001.	1.2	2
179	Editorial: Synthesis of Novel Hydrogels With Unique Mechanical Properties. Frontiers in Chemistry, 2020, 8, 595392.	1.8	2
180	Engineering Photocleavable Protein-decorated Hydrogels to Regulate Cell Adhesion and Migration. Chemical Research in Chinese Universities, 2022, 38, 1512-1517.	1.3	2

#	Article	IF	CITATIONS
181	A Single-Molecule View on the Disassembly of Tobacco Mosaic Virus. Biophysical Journal, 2013, 105, 2615-2616.	0.2	1
182	A versatile platform for single-molecule enzymology of restriction endonuclease. Journal of Innovative Optical Health Sciences, 2019, 12, 1841002.	0.5	1
183	A photocatalysis system based on composite nanostructures of controlable peptide nanotubes and graphene. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 098702.	0.2	1
184	Single molecule force spectroscopy study of calcium regulated mechanical unfolding of the A6 domain of adseverin. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 196201.	0.2	1
185	Allostery and molecular stripping mechanism in profilin regulated actin filament growth. New Journal of Physics, 0, , .	1.2	1
186	Strong and Reversible Covalent Double Network Hydrogel Based on Force oupled Enzymatic Reactions. Angewandte Chemie, 2022, 134, .	1.6	1
187	Engineered Recombinant Proteins for Aqueous Ultrasonic Exfoliation and Dispersion of Biofunctionalized 2D Materials. Chemistry - A European Journal, 2019, 25, 7957-7957.	1.7	0
188	A meeting to celebrate the centennial birthday of Yuan-Cheng Fung: the father of modern biomechanics and foreign member of the Chinese Academy of Sciences. National Science Review, 2019, 6, 1100-1101.	4.6	0
189	Rücktitelbild: Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics (Angew. Chem. 41/2021). Angewandte Chemie, 2021, 133, 22768-22768.	1.6	0
190	Mechanics of Proteins and Tailored Mechanics of Engineered Proteins. , 2011, , 47-82.		0
191	Reconfigurable Crosslinking System via Asymmetric Metal-Ligand Coordination Strategy. Polymer Chemistry, 0, , .	1.9	Ο