Xiao-Jun Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1239677/publications.pdf

Version: 2024-02-01

218677 254184 2,066 65 26 43 h-index citations g-index papers 65 65 65 2273 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Understanding the superior NH ₃ -SCR activity of CHA zeolite synthesized <i>via</i> template-free interzeolite transformation. Inorganic Chemistry Frontiers, 2022, 9, 1300-1312.	6.0	7
2	Redistributing Cu species in Cu-SSZ-13 zeolite as NH3-SCR catalyst via a simple ion-exchange. Chinese Journal of Chemical Engineering, 2022, 41, 329-341.	3.5	15
3	Two-Step Dry Gel Method Produces MgAPO-11 with Low Aspect Ratio and Improved Catalytic Performance in the Conversion of Methanol to Hydrocarbons. Catalysts, 2022, 12, 413.	3.5	2
4	Nitrogen- and Halogen-Free Multifunctional Polymer-Directed Fabrication of Aluminum-Rich Hierarchical MFI Zeolites. Nanomaterials, 2022, 12, 1633.	4.1	1
5	An environment-friendly and acid-degradable polymer templated synthesis of single-crystal hierarchical zeolites. Journal of Materials Chemistry A, 2022, 10, 15698-15707.	10.3	6
6	Propane dehydrogenation catalyzed by single Lewis acid site in Sn-Beta zeolite. Journal of Catalysis, 2021, 395, 155-167.	6.2	54
7	Mo supported on natural rectorite catalyst for slurry-phase hydrocracking of vacuum residue: An effect of calcination. Petroleum Science, 2021, 18, 1867-1876.	4.9	5
8	Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing dissolved aromatic organic compounds and metal ions. Science of the Total Environment, 2020, 698, 134287.	8.0	30
9	Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst. Applied Catalysis A: General, 2020, 589, 117312.	4.3	14
10	Solvent Effect in Heterogeneous Catalytic Selective Hydrogenation of Nitrile Butadiene Rubber: Relationship between Reaction Activity and Solvents with Density Functional Theory Analysis. ChemCatChem, 2020, 12, 663-672.	3.7	11
11	Alkane isomerization over sulfated zirconia solid acid system. International Journal of Energy Research, 2020, 44, 3270-3294.	4.5	26
12	Controllable synthesis of Ir(Rh) $\hat{a}\in Sn/SiO2$ bimetallic catalysts via surface organometallic chemistry for the production of ethanol from hydrogenolysis of ethyl acetate. Catalysis Science and Technology, 2020, 10, 1086-1095.	4.1	4
13	In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy Investigations on the Evolution of Surface and Catalysis Properties of Alumina-Promoted Sulfated Zirconia during <i>n</i> lsomerization. Industrial & Diffusion Chemistry Research, 2020, 59, 704-712.	3.7	3
14	Group C + particles: Efficiency augmentation of fluidized bed reactor through nanoâ€modulation. AICHE Journal, 2020, 66, e16870.	3.6	12
15	Propane Dehydrogenation over Pt Clusters Localized at the Sn Single-Site in Zeolite Framework. ACS Catalysis, 2020, 10, 818-828.	11.2	136
16	Green fabrication of hierarchical zeolites from natural minerals. National Science Review, 2020, 7, 1632-1634.	9.5	11
17	Effects of pore size, mesostructure and aluminum modification on FDU-12 supported NiMo catalysts for hydrodesulfurization. Petroleum Science, 2020, 17, 1737-1751.	4.9	11
18	One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates. Chemical Engineering Journal, 2020, 398, 125515.	12.7	37

#	Article	IF	CITATIONS
19	Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation. Journal of Materials Science, 2020, 55, 12876-12883.	3.7	8
20	Mesoscale depolymerization of natural rectorite mineral via a quasi-solid-phase approach for zeolite synthesis. Chemical Engineering Science, 2020, 220, 115635.	3.8	7
21	Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation. Catalysis Science and Technology, 2020, 10, 3537-3541.	4.1	48
22	Effect of Aluminum Addition and Surface Moisture Content on the Catalytic Activity of Sulfated Zirconia in n-Butane Isomerization. Industrial & Engineering Chemistry Research, 2019, 58, 14638-14645.	3.7	12
23	Direct Synthesis of Hierarchical FeCuâ€ZSMâ€5 Zeolite with Wide Temperature Window in Selective Catalytic Reduction of NO by NH ₃ . ChemCatChem, 2019, 11, 4744-4754.	3.7	21
24	Insights into the reaction pathway of n-butane conversion over HZSM-5 zeolite at low temperature. Applied Catalysis A: General, 2019, 584, 117135.	4.3	21
25	Synthesis, Characterization, and Catalytic Performance of Aminomethylphosphonic Molybdenum Catalysts for Slurry-Phase Hydrocracking. Industrial & Engineering Chemistry Research, 2019, 58, 2689-2696.	3.7	9
26	A Surface-Cofunctionalized Silica Supported Palladium Catalyst for Selective Hydrogenation of Nitrile Butadiene Rubber with Enhanced Catalytic Activity and Recycling Performance. Industrial & Engineering Chemistry Research, 2019, 58, 11821-11830.	3.7	14
27	Transformation and Crystallization Behaviors of Titanium Species in Synthesizing Ti-ZSM-5 Zeolites from Natural Rectorite Mineral. Industrial & Engineering Chemistry Research, 2019, 58, 11861-11870.	3.7	11
28	Bimetallic Pt-Sn nanocluster from the hydrogenolysis of a well-defined surface compound consisting of [(AlO)Pt(COD)Me] and [(AlO)SnPh3] fragments for propane dehydrogenation. Journal of Catalysis, 2019, 374, 391-400.	6.2	34
29	Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. Chemical Reviews, 2019, 119, 6822-6905.	47.7	127
30	Design and <i>in situ</i> synthesis of hierarchical SAPO-34@kaolin composites as catalysts for methanol to olefins. Catalysis Science and Technology, 2019, 9, 6438-6451.	4.1	15
31	Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals. Applied Clay Science, 2018, 158, 177-185.	5.2	45
32	Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation. Frontiers of Chemical Science and Engineering, 2018, 12, 59-69.	4.4	2
33	From cheap natural bauxite to high-efficient slurry-phase hydrocracking catalyst for high temperature coal tar: A simple hydrothermal modification. Fuel Processing Technology, 2018, 175, 123-130.	7.2	12
34	Dependence of Morphology, Dispersion and Hydrodesulfurization Performance of Active Phases in NiMo/SBAâ€15 on Loading Method. ChemCatChem, 2018, 10, 3717-3725.	3.7	9
35	Tailored Design of Differently Modified Mesoporous Materials To Deeply Understand the Adsorption Mechanism for Polycyclic Aromatic Hydrocarbons. Langmuir, 2018, 34, 15708-15718.	3.5	16
36	Synthesis, Modification, and Application of Hollow Mesoporous Carbon Submicrospheres for Adsorptive Desulfurization. Industrial & Engineering Chemistry Research, 2018, 57, 15020-15030.	3.7	28

#	Article	IF	CITATIONS
37	Aluminum Fluoride Modified Beta Zeolite as Highly Selective Catalyst for the Esterification of <i>sec</i> -Butanol with Acetic Acid. Industrial & Engineering Chemistry Research, 2018, 57, 10876-10882.	3.7	6
38	Synthesis and catalytic application of alumina@SAPO-11 composite <i>via</i> the <i>in situ</i> assembly of silicoaluminophosphate nanoclusters at an alumina substrate. Catalysis Science and Technology, 2018, 8, 4209-4218.	4.1	11
39	Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR. Journal of Materials Science, 2018, 53, 15064-15080.	3.7	13
40	Synthesis of Pd/SiO $<$ sub $>$ 2 $<$ /sub $>$ Catalysts in Various HCl Concentrations for Selective NBR Hydrogenation: Effects of H $<$ sup $>$ + $<$ /sup $>$ and Cl $<$ sup $>$ â \in " $<$ /sup $>$ Concentrations and Electrostatic Interactions. ACS Omega, 2018, 3, 6651-6659.	3.5	20
41	A Quasi-Solid-Phase Approach to Activate Natural Minerals for Zeolite Synthesis. ACS Sustainable Chemistry and Engineering, 2017, 5, 3233-3242.	6.7	25
42	Origin of the Robust Catalytic Performance of Nanodiamondâ€"Graphene-Supported Pt Nanoparticles Used in the Propane Dehydrogenation Reaction. ACS Catalysis, 2017, 7, 3349-3355.	11.2	85
43	Template-Free Synthesis and Catalytic Applications of Microporous and Hierarchical ZSM-5 Zeolites from Natural Aluminosilicate Minerals. Industrial & Engineering Chemistry Research, 2017, 56, 10069-10077.	3.7	26
44	Carboxylic acids to butyl esters over dealuminated–realuminated beta zeolites for removing organic acids from bio-oils. RSC Advances, 2017, 7, 33714-33725.	3.6	35
45	Acid-Modified Natural Bauxite Mineral as a Cost-Effective and High-Efficient Catalyst Support for Slurry-Phase Hydrocracking of High-Temperature Coal Tar. Energy & Energy & 2016, 30, 9203-9209.	5.1	15
46	On-stream stability enhancement of HZSM-5 based fluid catalytic cracking naphtha hydro-upgrading catalyst via magnesium modification. Catalysis Communications, 2016, 83, 31-34.	3.3	7
47	Pure-phase zeolite beta synthesized from natural aluminosilicate minerals and its catalytic application for esterification. Applied Clay Science, 2016, 126, 1-6.	5.2	31
48	From natural aluminosilicate minerals to zeolites: synthesis of ZSM-5 from rectorites activated via different methods. Applied Clay Science, 2015, 115, 201-211.	5.2	36
49	One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5, 9270.	3.3	52
50	Green synthesis of zeolites from a natural aluminosilicate mineral rectorite: Effects of thermal treatment temperature. Applied Clay Science, 2014, 90, 53-60.	5.2	49
51	From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization–reorganization approach. Journal of Catalysis, 2014, 319, 200-210.	6.2	81
52	Effect of pore diameter and structure of mesoporous sieve supported catalysts on hydrodesulfurization performance. Chemical Engineering Science, 2014, 111, 381-389.	3.8	31
53	A process for producing ultraclean gasoline by coupling efficient hydrodesulfurization and directional olefin conversion. AICHE Journal, 2013, 59, 571-581.	3.6	24
54	New understanding and controllable synthesis of silica hollow microspheres with size-tunable penetrating macroporous shells as a superior support for polystyrene hydrogenation catalysts. Journal of Materials Chemistry A, 2013, 1, 9597.	10.3	22

#	ARTICLE	IF	CITATION
55	Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization. Journal of Catalysis, 2013, 301, 162-173.	6.2	75
56	Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 2013, 5, 2258-2269.	3.7	38
57	Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes. Journal of Catalysis, 2012, 294, 161-170.	6.2	102
58	Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application. Green Chemistry, 2012, 14, 3255.	9.0	60
59	Natural rectorite mineral: A promising substitute of kaolin for inâ€situ synthesis of fluid catalytic cracking catalysts. AICHE Journal, 2010, 56, 2913-2922.	3.6	21
60	Coking and Deactivation Behavior of HZSM-5 Zeolite-Based FCC Gasoline Hydro-Upgrading Catalyst. Energy & Energy	5.1	46
61	Realumination of dealuminated HZSM-5 zeolite by citric acid treatment and its application in preparing FCC gasoline hydro-upgrading catalyst. Microporous and Mesoporous Materials, 2007, 98, 174-181.	4.4	25
62	Synthesis, characterization, and catalytic properties of hydrothermally stable macro–meso–micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin. Journal of Catalysis, 2007, 251, 69-79.	6.2	119
63	A novel method for enhancing on-stream stability of fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst: Post-treatment of HZSM-5 zeolite by combined steaming and citric acid leaching. Catalysis Today, 2007, 125, 185-191.	4.4	49
64	Acidity Adjustment of HZSM-5 Zeolites by Dealumination and Realumination with Steaming and Citric Acid Treatments. Journal of Physical Chemistry B, 2006, 110, 15411-15416.	2.6	86
65	Synthesis and characterization of kaolin/NaY/MCM-41 composites. Microporous and Mesoporous Materials, 2003, 66, 117-125.	4.4	52