John Kenneth Baillie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/123901/publications.pdf

Version: 2024-02-01

135 papers 35,667 citations

54 h-index 12910 131 g-index

192 all docs

192 docs citations

times ranked

192

61450 citing authors

#	Article	IF	CITATIONS
1	Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endotypes of the Host Response to Systemic Injury in Humans. Annals of Surgery, 2022, 275, e453-e462.	2.1	24
2	Tissue Proteomic Analysis Identifies Mechanisms and Stages of Immunopathology in Fatal COVID-19. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 196-205.	1.4	26
3	SARS-CoV-2 environmental contamination from hospitalised patients with COVID-19 receiving aerosol-generating procedures. Thorax, 2022, 77, 259-267.	2.7	34
4	Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nature Genetics, 2022, 54, 125-127.	9.4	75
5	SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 2022, 185, 467-484.e15.	13.5	788
6	Effect of Noninvasive Respiratory Strategies on Intubation or Mortality Among Patients With Acute Hypoxemic Respiratory Failure and COVID-19. JAMA - Journal of the American Medical Association, 2022, 327, 546.	3.8	229
7	A common TMPRSS2 variant has a protective effect against severe COVID-19. Current Research in Translational Medicine, 2022, 70, 103333.	1.2	30
8	Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity. Human Genetics, 2022, 141, 147-173.	1.8	22
9	Soluble P-Selectin and von Willebrand Factor Rise in Healthy Volunteers Following Non-exertional Ascent to High Altitude. Frontiers in Physiology, 2022, 13, 825819.	1.3	3
10	Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature, 2022, 607, 97-103.	13.7	174
10	Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature, 2022, 607, 97-103. SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet, The, 2022, 399, 1463-1464.	13.7	174
	SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet,		
11	SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet, The, 2022, 399, 1463-1464.	6.3	178
11 12	SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet, The, 2022, 399, 1463-1464. Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation, 2022, 145, 1398-1411. Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the	6.3 1.6	178 20
11 12 13	SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet, The, 2022, 399, 1463-1464. Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation, 2022, 145, 1398-1411. Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. Thorax, 2022, 77, 606-615. Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011	6.3 1.6 2.7	178 20 24
11 12 13	SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet, The, 2022, 399, 1463-1464. Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation, 2022, 145, 1398-1411. Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. Thorax, 2022, 77, 606-615. Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study. Scientific Reports, 2022, 12, 6843. Analysis of SARS-CoV-2 in Nasopharyngeal Samples from Patients with COVID-19 Illustrates Population Variation and Diverse Phenotypes, Placing the Growth Properties of Variants of Concern in Context	6.3 1.6 2.7	178 20 24 12
11 12 13 14	SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet, The, 2022, 399, 1463-1464. Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation, 2022, 145, 1398-1411. Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. Thorax, 2022, 77, 606-615. Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study. Scientific Reports, 2022, 12, 6843. Analysis of SARS-CoV-2 in Nasopharyngeal Samples from Patients with COVID-19 Illustrates Population Variation and Diverse Phenotypes, Placing the Growth Properties of Variants of Concern in Context with Other Lineages. MSphere, 2022, 7, e0091321. Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission. Open Forum	6.3 1.6 2.7 1.6	178 20 24 12 8

#	Article	IF	Citations
19	Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunology, 2022, 23, 927-939.	7.0	21
20	Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity. Cell Systems, 2022, 13, 598-614.e6.	2.9	10
21	Mapping of SARS-CoV-2 IgM and IgG in gingival crevicular fluid: Antibody dynamics and linkage to severity of COVID-19 in hospital inpatients. Journal of Infection, 2022, 85, 152-160.	1.7	6
22	Redefining critical illness. Nature Medicine, 2022, 28, 1141-1148.	15.2	136
23	Clonal hematopoiesis is not significantly associated with COVID-19 disease severity. Blood, 2022, 140, 1650-1655.	0.6	10
24	Dexamethasone in Hospitalized Patients with Covid-19. New England Journal of Medicine, 2021, 384, 693-704.	13.9	8,063
25	Tissue-Specific Immunopathology in Fatal COVID-19. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 192-201.	2.5	243
26	Sepsis Subclasses: A Framework for Development and Interpretation*. Critical Care Medicine, 2021, 49, 748-759.	0.4	81
27	A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nature Communications, 2021, 12, 1951.	5. 8	54
28	Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Science Immunology, 2021, 6, .	5.6	161
29	Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVIDâ€19: Analysis of the ISARIC CCPâ€UK Cohort. Obesity, 2021, 29, 1223-1230.	1.5	34
30	Two Key Takeaways From a Year of Pandemic Research. Critical Care Medicine, 2021, Publish Ahead of Print, 1223-1226.	0.4	1
31	Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respiratory Medicine, the, 2021, 9, 349-359.	5.2	161
32	COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study. Infection, 2021, 49, 889-905.	2.3	62
33	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	5. 8	11
34	COVID-19 pneumothorax in the UK: a prospective observational study using the ISARIC WHO clinical characterisation protocol. European Respiratory Journal, 2021, 58, 2100929.	3.1	21
35	Changes in in-hospital mortality in the first wave of COVID-19: a multicentre prospective observational cohort study using the WHO Clinical Characterisation Protocol UK. Lancet Respiratory Medicine, the, 2021, 9, 773-785.	5.2	78
36	Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study. Lancet, The, 2021, 398, 223-237.	6.3	110

#	Article	IF	Citations
37	Global infectious disease research collaborations in crises: building capacity and inclusivity through cooperation. Globalization and Health, 2021, 17, 84.	2.4	11
38	Obesity, chronic disease, age, and in-hospital mortality in patients with covid-19: analysis of ISARIC clinical characterisation protocol UK cohort. BMC Infectious Diseases, 2021, 21, 717.	1.3	19
39	Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. American Journal of Human Genetics, 2021, 108, 1350-1355.	2.6	72
40	Mapping the human genetic architecture of COVID-19. Nature, 2021, 600, 472-477.	13.7	640
41	Endomembrane targeting of human OAS1 p46 augments antiviral activity. ELife, 2021, 10, .	2.8	41
42	Hospital-acquired SARS-CoV-2 infection in the UK's first COVID-19 pandemic wave. Lancet, The, 2021, 398, 1037-1038.	6.3	75
43	Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID). BMJ Open Respiratory Research, 2021, 8, e001049.	1.2	28
44	A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374, eabj3624.	6.0	124
45	Genetic mechanisms of critical illness in COVID-19. Nature, 2021, 591, 92-98.	13.7	1,014
46	Histological Evidence of Pulmonary Microthrombosis and Vasculitis in Life-Threatening Respiratory Virus Diseases. Open Forum Infectious Diseases, 2021, 8, ofaa640.	0.4	6
47	Subtractive CRISPR screen identifies the ATG16L1/vacuolar ATPase axis as required for non-canonical LC3 lipidation. Cell Reports, 2021, 37, 109899.	2.9	33
48	Vitamin D insufficiency in COVID-19 and influenza A, and critical illness survivors: a cross-sectional study. BMJ Open, 2021, 11, e055435.	0.8	10
49	The value of open-source clinical science in pandemic response: lessons from ISARIC. Lancet Infectious Diseases, The, 2021, 21, 1623-1624.	4.6	21
50	Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nature Communications, 2020, 11, 164.	5.8	136
51	Hypoxia Modulates Platelet Purinergic Signalling Pathways. Thrombosis and Haemostasis, 2020, 120, 253-261.	1.8	12
52	Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1656-1665.	2.5	171
53	Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. New England Journal of Medicine, 2020, 383, 2030-2040.	13.9	1,013
54	RECOVERY- Respiratory Support: Respiratory Strategies for patients with suspected or proven COVID-19 respiratory failure; Continuous Positive Airway Pressure, High-flow Nasal Oxygen, and standard care: A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 687.	0.7	28

#	Article	IF	Citations
55	Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Research, 2020, 30, 1060-1072.	2.4	109
56	Amplicon-Based Detection and Sequencing of SARS-CoV-2 in Nasopharyngeal Swabs from Patients With COVID-19 and Identification of Deletions in the Viral Genome That Encode Proteins Involved in Interferon Antagonism. Viruses, 2020, 12, 1164.	1.5	51
57	Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19. JAMA - Journal of the American Medical Association, 2020, 324, 1317.	3.8	671
58	Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature Immunology, 2020, 21, 1336-1345.	7.0	1,066
59	Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infectious Diseases, The, 2020, 20, 1390-1400.	4.6	336
60	Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ, The, 2020, 370, m3339.	3.0	779
61	Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences. Journal of Virology, 2020, 94, .	1.5	14
62	Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell, 2020, 181, 1502-1517.e23.	13.5	33
63	Global outbreak research: harmony not hegemony. Lancet Infectious Diseases, The, 2020, 20, 770-772.	4.6	40
64	Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance. Frontiers in Immunology, 2020, 11, 786.	2.2	10
65	Using imaging to combat a pandemic: rationale for developing the UK National COVID-19 Chest Imaging Database. European Respiratory Journal, 2020, 56, 2001809.	3.1	24
66	Linking protein to phenotype with Mendelian Randomization detects 38 proteins with causal roles in human diseases and traits. PLoS Genetics, 2020, 16, e1008785.	1.5	29
67	Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, The, 2020, 395, 473-475.	6.3	1,644
68	Dynamic data-driven meta-analysis for prioritisation of host genes implicated in COVID-19. Scientific Reports, 2020, 10, 22303.	1.6	31
69	Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ, The, 2020, 369, m1985.	3.0	2,474
70	Antibody testing for COVID-19: A report from theÂNational COVID Scientific Advisory Panel. Wellcome Open Research, 2020, 5, 139.	0.9	179
71	An evidence-based framework for priority clinical research questions for COVID-19. Journal of Global Health, 2020, 10, .	1.2	22
72	Letter to the Editor: Response to Luke Fletcher and Philip Peyton regarding "Predictive validity of a novel non-invasive estimation of effective shunt fraction in critically ill patients†Intensive Care Medicine Experimental, 2020, 8, 57.	0.9	0

#	Article	lF	CITATIONS
73	An evidence-based framework for priority clinical research questions for COVID-19. Journal of Global Health, 2020, 10, 011001.	1.2	11
74	Predictive validity of a novel non-invasive estimation of effective shunt fraction in critically ill patients. Intensive Care Medicine Experimental, 2019, 7, 49.	0.9	6
75	Host susceptibility to severe influenza A virus infection. Critical Care, 2019, 23, 303.	2.5	73
76	The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis. Journal of Infection, 2019, 78, 339-348.	1.7	131
77	The effect of dexmedetomidine and clonidine on the inflammatory response in critical illness: a systematic review of animal and human studies. Critical Care, 2019, 23, 402.	2.5	42
78	The Search for Efficacious New Therapies in Sepsis Needs to Embrace Heterogeneity. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 936-938.	2.5	17
79	Thromboelastometry and Platelet Function during Acclimatization to High Altitude. Thrombosis and Haemostasis, 2018, 118, 063-071.	1.8	30
80	The 2018 Lake Louise Acute Mountain Sickness Score. High Altitude Medicine and Biology, 2018, 19, 4-6.	0.5	324
81	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	1.5	17
82	Middle East Respiratory Syndrome. New England Journal of Medicine, 2017, 376, 584-594.	13.9	351
83	Treatable traits and therapeutic targets: Goals for systems biology in infectious disease. Current Opinion in Systems Biology, 2017, 2, 140-146.	1.3	37
84	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	2.4	195
85	Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genetics, 2017, 13, e1006641.	1.5	161
86	Microglial brain regionâ^'dependent diversity and selective regional sensitivities to aging. Nature Neuroscience, 2016, 19, 504-516.	7.1	919
87	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	6.0	517
88	Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biology, 2015, 16, 22.	3.8	687
89	The Effectiveness of Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe Acute Respiratory Infections of Viral Etiology: A Systematic Review and Exploratory Meta-analysis. Journal of Infectious Diseases, 2015, 211, 80-90.	1.9	841
90	Open source clinical science for emerging infections. Lancet Infectious Diseases, The, 2014, 14, 8-9.	4.6	82

#	Article	IF	Citations
91	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
92	An atlas of active enhancers across human cell types and tissues. Nature, 2014, 507, 455-461.	13.7	2,269
93	Targeting the host immune response to fight infection. Science, 2014, 344, 807-808.	6.0	30
94	Antiviral combinations for severe influenza. Lancet Infectious Diseases, The, 2014, 14, 1259-1270.	4.6	159
95	Stratified infection medicine: a call to arms. Lancet Infectious Diseases, The, 2014, 14, 451.	4.6	2
96	Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions. Molecular Genetics and Metabolism, 2014, 112, 73-83.	0.5	39
97	Network Analysis Reveals Distinct Clinical Syndromes Underlying Acute Mountain Sickness. PLoS ONE, 2014, 9, e81229.	1.1	48
98	Influenza â€" Time to Target the Host?. New England Journal of Medicine, 2013, 369, 191-193.	13.9	50
99	Complete genome sequence of methicillin-sensitive Staphylococcus aureus containing a heterogeneic staphylococcal cassette chromosome element. Science China Life Sciences, 2013, 56, 268-274.	2.3	0
100	An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics, 2013, 14, 632.	1.2	347
101	Wide variation and systematic bias in expert clinicians' perceptions of prognosis following brain injury. British Journal of Neurosurgery, 2013, 27, 340-343.	0.4	25
102	Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma. Cell, 2013, 153, 101-111.	13.5	352
103	Deciding authorship order. BMJ, The, 2013, 347, f7182-f7182.	3.0	6
104	An updated systematic review of the role of host genetics in susceptibility to influenza. Influenza and Other Respiratory Viruses, 2013, 7, 37-41.	1.5	39
105	Modelling mutational and selection pressures on dinucleotides in eukaryotic phyla –selection against CpG and UpA in cytoplasmically expressed RNA and in RNA viruses. BMC Genomics, 2013, 14, 610.	1.2	71
106	Identification of Novel Genes Selectively Expressed in the Follicle-Associated Epithelium from the Meta-Analysis of Transcriptomics Data from Multiple Mouse Cell and Tissue Populations. DNA Research, 2012, 19, 407-422.	1.5	17
107	Retinal Vessel Tortuosity in Response to Hypobaric Hypoxia. High Altitude Medicine and Biology, 2012, 13, 263-268.	0.5	12
108	IFITM3 restricts the morbidity and mortality associated with influenza. Nature, 2012, 484, 519-523.	13.7	668

#	Article	IF	CITATIONS
109	A gene expression atlas of the domestic pig. BMC Biology, 2012, 10, 90.	1.7	199
110	Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E944-53.	3.3	332
111	High altitude adaptation in Daghestani populations from the Caucasus. Human Genetics, 2012, 131, 423-433.	1.8	31
112	The Role of Host Genetics in Susceptibility to Influenza: AÂSystematic Review. PLoS ONE, 2012, 7, e33180.	1.1	98
113	Sildenafil Citrate for the Prevention of High Altitude Hypoxic Pulmonary Hypertension: Double Blind, Randomized, Placebo-Controlled Trial. High Altitude Medicine and Biology, 2011, 12, 207-214.	0.5	32
114	Expression of mesenchyme-specific gene signatures by follicular dendritic cells: insights from the meta-analysis of microarray data from multiple mouse cell populations. Immunology, 2011, 133, 482-498.	2.0	50
115	Somatic retrotransposition alters the genetic landscape of the human brain. Nature, 2011, 479, 534-537.	13.7	621
116	High Altitude Pulmonary Oedema. Journal of the Royal Army Medical Corps, 2011, 157, 68-72.	0.8	25
117	Is somatic retrotransposition a parasitic or symbiotic phenomenon?. Mobile Genetic Elements, $2011, 1, 279-328$.	1.8	14
118	Passage of pathogenic microorganisms through breathing system filters used in anaesthesia and intensive care. Anaesthesia, 2010, 65, 670-673.	1.8	10
119	Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology, 2010, 215, 724-736.	0.8	81
120	Functional clustering and lineage markers: Insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics, 2010, 95, 328-338.	1.3	112
121	Incidence and predictors of acute mountain sickness among trekkers on Mount Kilimanjaro. High Altitude Medicine and Biology, 2010, 11, 217-222.	0.5	58
122	Oral antioxidant supplementation does not prevent acute mountain sickness: double blind, randomized placebo-controlled trial. QJM - Monthly Journal of the Association of Physicians, 2009, 102, 341-348.	0.2	85
123	The citric acid cough threshold and the ventilatory response to carbon dioxide on ascent to high altitude. Respiratory Medicine, 2009, 103, 1182-1188.	1.3	5
124	Measurement errors caused by incompatibility of apparatus. European Journal of Anaesthesiology, 2009, 26, 977-980.	0.7	0
125	Simple, easily memorised "rules of thumb" for the rapid assessment of physiological compensation for respiratory acid-base disorders. Thorax, 2008, 63, 289-290.	2.7	6
126	NT-proBNP Does Not Rise on Acute Ascent to High Altitude. High Altitude Medicine and Biology, 2008, 9, 307-310.	0.5	20

#	Article	IF	CITATIONS
127	Endogenous Urate Production Augments Plasma Antioxidant Capacity in Healthy Lowland Subjects Exposed to High Altitude. Chest, 2007, 131, 1473-1478.	0.4	52
128	Change in plasma vascular endothelial growth factor during onset and recovery from acute mountain sickness. Respiratory Medicine, 2007, 101, 587-594.	1.3	39
129	Contamination of anaesthetic machines with pathogenic organisms*. Anaesthesia, 2007, 62, 1257-1261.	1.8	20
130	Activated protein C: controversy and hope in the treatment of sepsis. Current Opinion in Investigational Drugs, 2007, 8, 933-8.	2.3	3
131	Endothelial Nitric Oxide Synthase Polymorphisms Do Not Influence Pulmonary Artery Systolic Pressure at Altitude. High Altitude Medicine and Biology, 2006, 7, 221-227.	0.5	19
132	The mechanism of action of gabapentin in neuropathic pain. Current Opinion in Investigational Drugs, 2006, 7, 33-9.	2.3	26
133	Pericardial effusions in healthy lowlanders after acute ascent to high altitude. Heart, 2005, 92, 539-540.	1.2	6
134	Morphine, Gabapentin, or Their Combination for Neuropathic Pain. New England Journal of Medicine, 2005, 352, 2650-2651.	13.9	20
135	A Common <i>TMPRSS2</i> Variant Protects Against Severe COVID-19. SSRN Electronic Journal, 0, , .	0.4	2