E Cebrian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1238953/publications.pdf

Version: 2024-02-01

		126907	155660
75	3,440	33	55
papers	citations	h-index	g-index
78	78	78	3601
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Marine biomonitoring with eDNA: Can metabarcoding of water samples cut it as a tool for surveying benthic communities?. Molecular Ecology, 2021, 30, 3175-3188.	3.9	46
2	Mediterranean rocky reefs in the Anthropocene: Present status and future concerns. Advances in Marine Biology, 2021, 89, 1-51.	1.4	20
3	Localâ€scale climatic refugia offer sanctuary for a habitatâ€forming species during a marine heatwave. Journal of Ecology, 2021, 109, 1758-1773.	4.0	50
4	The role of competition and herbivory in biotic resistance against invaders: a synergistic effect. Ecology, 2021, 102, e03440.	3.2	9
5	Herbivory on the Invasive Alga Caulerpa cylindracea: The Role of Omnivorous Fishes. Frontiers in Marine Science, 2021, 8, .	2.5	3
6	Where Is More Important Than How in Coastal and Marine Ecosystems Restoration. Frontiers in Marine Science, 2021, 8, .	2.5	25
7	Effects of Natural and Anthropogenic Stressors on Fucalean Brown Seaweeds Across Different Spatial Scales in the Mediterranean Sea. Frontiers in Marine Science, 2021, 8, .	2.5	25
8	A Roadmap for the Restoration of Mediterranean Macroalgal Forests. Frontiers in Marine Science, $2021, 8, .$	2.5	30
9	Warming may increase the vulnerability of calcareous algae to bioinvasions. Marine Pollution Bulletin, 2021, 173, 113099.	5.0	3
10	Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212384.	2.6	12
11	Differential effects of pollution on adult and recruits of a canopy-forming alga: implications for population viability under low pollutant levels. Scientific Reports, 2020, 10, 17825.	3.3	23
12	Modeling Macroalgal Forest Distribution at Mediterranean Scale: Present Status, Drivers of Changes and Insights for Conservation and Management. Frontiers in Marine Science, 2020, 7, .	2.5	33
13	Habitat Features and Their Influence on the Restoration Potential of Marine Habitats in Europe. Frontiers in Marine Science, 2020, 7, .	2.5	27
14	Management priorities for marine invasive species. Science of the Total Environment, 2019, 688, 976-982.	8.0	127
15	Community-dependent variability in species composition and richness on rocky shores at a regional scale. Estuarine, Coastal and Shelf Science, 2019, 230, 106425.	2.1	3
16	Habitat mapping in the European Seas - is it fit for purpose in the marine restoration agenda?. Marine Policy, 2019, 106, 103521.	3.2	31
17	Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecology and Evolution, 2019, 9, 4168-4180.	1.9	25
18	Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Scientific Reports, 2019, 9, 5911.	3.3	66

#	Article	IF	CITATIONS
19	Collaborative Database to Track Mass Mortality Events in the Mediterranean Sea. Frontiers in Marine Science, $2019, 6, .$	2.5	104
20	Warming impacts on early life stages increase the vulnerability and delay the population recovery of a longâ€lived habitatâ€forming macroalga. Journal of Ecology, 2019, 107, 1129-1140.	4.0	33
21	Under the canopy: Community-wide effects of invasive algae in Marine Protected Areas revealed by metabarcoding. Marine Pollution Bulletin, 2018, 127, 54-66.	5.0	24
22	Biodiversity influences invasion success of a facultative epiphytic seaweed in a marine forest. Biological Invasions, 2018, 20, 2839-2848.	2.4	7
23	Restoration of a Canopy-Forming Alga Based on Recruitment Enhancement: Methods and Long-Term Success Assessment. Frontiers in Plant Science, 2018, 9, 1832.	3.6	87
24	Postglacial range expansion shaped the spatial genetic structureÂin a marine habitatâ€forming species: Implications for conservation plans in the Eastern Adriatic Sea. Journal of Biogeography, 2018, 45, 2645-2657.	3.0	17
25	The optimal sampling design for littoral habitats modelling: A case study from the north-western Mediterranean. PLoS ONE, 2018, 13, e0197234.	2.5	7
26	An ecosystem-based approach to assess the status of Mediterranean algae-dominated shallow rocky reefs. Marine Pollution Bulletin, 2017, 117, 311-329.	5.0	49
27	Re-shifting the ecological baseline for the overexploited Mediterranean red coral. Scientific Reports, 2017, 7, 42404.	3.3	26
28	Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species. Scientific Reports, 2017, 7, 5069.	3.3	26
29	Rolling corals in the Mediterranean Sea. Coral Reefs, 2017, 36, 245-245.	2.2	9
30	A new Cladocora caespitosa population with unique ecological traits. Mediterranean Marine Science, 2017, 18, 38.	1.6	15
31	Snapshot of a Bacterial Microbiome Shift during the Early Symptoms of a Massive Sponge Die-Off in the Western Mediterranean. Frontiers in Microbiology, 2016, 7, 752.	3.5	46
32	Structure and biodiversity of coralligenous assemblages dominated by the precious red coral Corallium rubrum over broad spatial scales. Scientific Reports, 2016, 6, 36535.	3.3	23
33	Life on the boundary: Environmental factors as drivers of habitat distribution in the littoral zone. Estuarine, Coastal and Shelf Science, 2016, 172, 81-92.	2.1	21
34	Geographic distance, water circulation and environmental conditions shape the biodiversity of Mediterranean rocky coasts. Marine Ecology - Progress Series, 2016, 553, 1-11.	1.9	12
35	Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Scientific Reports, 2015, 5, 18635.	3.3	39
36	Combining Genetic and Demographic Data for the Conservation of a Mediterranean Marine Habitat-Forming Species. PLoS ONE, 2015, 10, e0119585.	2.5	38

#	Article	IF	CITATIONS
37	Structure and biodiversity of coralligenous assemblages over broad spatial and temporal scales. Marine Biology, 2015, 162, 901-912.	1.5	46
38	Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150587.	2.6	56
39	Global regime shift dynamics of catastrophic sea urchin overgrazing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130269.	4.0	376
40	Rapid recovery from injuries in the temperate long-lived coral Cladocora caespitosa. Marine Biodiversity, 2015, 45, 135-137.	1.0	2
41	Population structure and conservation status of the red gorgonian <i>Paramuricea clavata </i> (Risso, 1826) in the Eastern Adriatic Sea. Marine Ecology, 2015, 36, 982-993.	1.1	24
42	Tropical rabbitfish and the deforestation of a warming temperate sea. Journal of Ecology, 2014, 102, 1518-1527.	4.0	163
43	Coralligenous and ma \tilde{A} «rl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Scientific Reports, 2014, 4, .	3.3	128
44	Coexistence of Low Coral Cover and High Fish Biomass at Farquhar Atoll, Seychelles. PLoS ONE, 2014, 9, e87359.	2.5	16
45	Impact of an invasive alga (Womersleyella setacea) on sponge assemblages: compromising the viability of future populations. Biological Invasions, 2013, 15, 1591-1600.	2.4	27
46	Does thermal history influence the tolerance of temperate gorgonians to future warming?. Marine Environmental Research, 2013, 89, 45-52.	2.5	26
47	Impacts on Coralligenous Outcrop Biodiversity of a Dramatic Coastal Storm. PLoS ONE, 2013, 8, e53742.	2.5	79
48	Effects of turf algae on recruitment and juvenile survival of gorgonian corals. Marine Ecology - Progress Series, 2012, 452, 81-88.	1.9	38
49	Deep-water macroalgal-dominated coastal detritic assemblages on the continental shelf off Mallorca and Menorca (Balearic Islands, Western Mediterranean). Botanica Marina, 2012, 55, 485-497.	1.2	20
50	Exploring the effects of invasive algae on the persistence of gorgonian populations. Biological Invasions, 2012, 14, 2647-2656.	2.4	66
51	Relationships between fish, sea urchins and macroalgae: The structure of shallow rocky sublittoral communities in the Cyclades, Eastern Mediterranean. Estuarine, Coastal and Shelf Science, 2012, 109, 1-10.	2.1	67
52	Marine Invasion in the Mediterranean Sea: The Role of Abiotic Factors When There Is No Biological Resistance. PLoS ONE, 2012, 7, e31135.	2.5	16
53	Rapid Biodiversity Assessment and Monitoring Method for Highly Diverse Benthic Communities: A Case Study of Mediterranean Coralligenous Outcrops. PLoS ONE, 2011, 6, e27103.	2.5	58
54	Differential herbivory of invasive algae by native fish in the Mediterranean Sea. Estuarine, Coastal and Shelf Science, 2011, 92, 27-34.	2.1	46

#	Article	IF	CITATIONS
55	Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales,) Tj ETQq1 1 0.784314	rgBT /Ove	rlggk 10 T
56	Do native herbivores provide resistance to Mediterranean marine bioinvasions? A seaweed example. Biological Invasions, 2011, 13, 1397-1408.	2.4	40
57	Sponge Mass Mortalities in a Warming Mediterranean Sea: Are Cyanobacteria-Harboring Species Worse Off?. PLoS ONE, 2011, 6, e20211.	2.5	158
58	Grazing on coral reefs facilitates growth of the excavating sponge Cliona orientalis (Clionaidae,) Tj ETQq0 0 0 rgB	「 /Overloc 1.1	k 10 Tf 50 6
59	Invasion of Mediterranean benthic assemblages by red alga Lophocladia lallemandii (Montagne) F. Schmitz: Depth-related temporal variability in biomass and phenology. Aquatic Botany, 2010, 92, 81-85.	1.6	36
60	Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: Insights into assemblage structure and population dynamics. Estuarine, Coastal and Shelf Science, 2009, 82, 477-484.	2.1	80
61	Temporal and spatial variability in shallow- and deep-water populations of the invasive Caulerpa racemosa var. cylindracea in the Western Mediterranean. Estuarine, Coastal and Shelf Science, 2009, 83, 469-474.	2.1	33
62	Contrasting effects of heavy metals and hydrocarbons on larval settlement and juvenile survival in sponges. Aquatic Toxicology, 2007, 81, 137-143.	4.0	30
63	Mortality of shoots of Posidonia oceanica following meadow invasion by the red alga Lophocladia lallemandii. Botanica Marina, 2007, 50, .	1.2	60
64	Do heavy metals play an active role in sponge cell behaviour in the absence of calcium? Consequences in larval settlement. Journal of Experimental Marine Biology and Ecology, 2007, 346, 60-65.	1.5	13
65	Sponges as biomonitors of heavy metals in spatial and temporal surveys in northwestern Mediterranean: Multispecies comparison. Environmental Toxicology and Chemistry, 2007, 26, 2430-2439.	4.3	65
66	Contrasting Effects of Heavy Metals on Sponge Cell Behavior. Archives of Environmental Contamination and Toxicology, 2007, 53, 552-558.	4.1	16
67	Response of the Mediterranean sponge Chondrosia reniformis Nardo to copper pollution. Environmental Pollution, 2006, 141, 452-458.	7.5	63
68	Grazing on fleshy seaweeds by sea urchins facilitates sponge Cliona viridis growth. Marine Ecology - Progress Series, 2006, 323, 83-89.	1.9	28
69	Pseudovivipary, a new form of asexual reproduction in the seagrass Posidonia oceanica. Botanica Marina, 2005, 48, .	1.2	16
70	Zonation patterns of benthic communities in an upwelling area from the western Medierranean (La) Tj ETQq0 0 0	rgBT /Ove	rlggk 10 Tf !
71	Sublethal effects of contamination on the Mediterranean sponge Crambe crambe: metal accumulation and biological responses. Marine Pollution Bulletin, 2003, 46, 1273-1284.	5.0	7 5
72	Does stress protein induction by copper modify natural toxicity in sponges?. Environmental Toxicology and Chemistry, 2001, 20, 2588-2593.	4.3	30

E CEBRIAN

#	Article	IF	CITATION
73	The photosynthetic capacity of the seagrass Posidonia oceanica: influence of nitrogen and light. Journal of Experimental Marine Biology and Ecology, 2001, 261, 107-120.	1.5	66
74	Does stress protein induction by copper modify natural toxicity in sponges?. Environmental Toxicology and Chemistry, 2001, 20, 2588-93.	4.3	5
75	Shallow rocky bottom benthic assemblages as calcium carbonate producers in the Alboran Sea (southwestern Mediterranean). Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2000, 23, 311-322.	0.7	51