Hideto Miyabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1238913/publications.pdf

Version: 2024-02-01

136950 175258 2,888 71 32 h-index citations g-index papers

83 83 83 1992 docs citations times ranked citing authors all docs

52

#	Article	IF	CITATIONS
1	Enantio- and Diastereoselective Ir-Catalyzed Allylic Substitutions for Asymmetric Synthesis of Amino Acid Derivatives. Angewandte Chemie - International Edition, 2003, 42, 2054-2056.	13.8	170
2	A Multicomponent Coupling Reaction Induced by Insertion of Arynes into the CiŁ 3 4O Bond of Formamide. Angewandte Chemie - International Edition, 2011, 50, 6638-6642.	13.8	162
3	Asymmetric Synthesis of α-Amino Acids Based on Carbon Radical Addition to Glyoxylic Oxime Ether. Journal of Organic Chemistry, 2000, 65, 176-185.	3.2	133
4	Total Synthesis of (â^')-Balanol. Journal of Organic Chemistry, 1998, 63, 4397-4407.	3.2	116
5	Utility of the Iridium Complex of the Pybox Ligand in Regio- and Enantioselective Allylic Substitution. Organic Letters, 2004, 6, 4631-4634.	4.6	108
6	Synthesis of \hat{l}^2 -Substituted \hat{l}_\pm -Amino Acids with Use of Iridium-Catalyzed Asymmetric Allylic Substitution. Journal of Organic Chemistry, 2003, 68, 6197-6201.	3.2	107
7	Sequential Reaction of Arynes via Insertion into the π-Bond of Amides and Trapping Reaction with Dialkylzincs. Organic Letters, 2010, 12, 1956-1959.	4.6	105
8	Indium-Mediated Tandem Radical Additionâ^'Cyclization-Trap Reactions in Aqueous Media. Organic Letters, 2003, 5, 3835-3838.	4.6	83
9	Tandem Carbonâ^'Carbon Bond-Forming Radical Addition-Cyclization Reaction of Oxime Ether and Hydrazone. Journal of Organic Chemistry, 2003, 68, 5618-5626.	3.2	71
10	A New Alternative to the Mannich Reaction:  Tandem Radical Additionâ^'Cyclization Reaction for Asymmetric Synthesis of γ-Butyrolactones and β-Amino Acids. Organic Letters, 2000, 2, 4071-4074.	4.6	70
11	Hydroxylamines as Oxygen Atom Nucleophiles in Transition-Metal-Catalyzed Allylic Substitution. Journal of Organic Chemistry, 2005, 70, 2148-2153.	3.2	69
12	Enantioselective Radical Cyclizations: A New Approach to Stereocontrol of Cascade Reactions. Chemistry - A European Journal, 2007, 13, 7280-7286.	3.3	66
13	Tandem Radical-Addition-Aldol-Type Reaction of an \hat{l}_{\pm},\hat{l}^2 -Unsaturated Oxime Ether. Angewandte Chemie - International Edition, 2005, 44, 6190-6193.	13.8	63
14	Progress in Intermolecular Carbon Radical Addition to Imine Derivatives. Current Organic Chemistry, 2010, 14, 1254-1264.	1.6	61
15	Reactive Ketimino Radical Acceptors:Â Intermolecular Alkyl Radical Addition to Imines with a Phenolic Hydroxyl Group. Journal of Organic Chemistry, 2006, 71, 2099-2106.	3.2	60
16	Enantioselective Cascade Radical Addition–Cyclization–Trapping Reactions. Angewandte Chemie - International Edition, 2006, 45, 5863-5866.	13.8	60
17	Reactivity of Trapped and Accumulated Electrons in Titanium Dioxide Photocatalysis. Catalysts, 2017, 7, 303.	3.5	60
18	Highly diastereoselective radical addition to glyoxylic oxime ether: asymmetric synthesis of \hat{l}_{\pm} -amino acids. Chemical Communications, 1997, , 1789-1790.	4.1	55

#	Article	IF	CITATIONS
19	Regioselective Hydroxysulfenylation of α,βâ€Unsaturated Imines: Enhanced Stability of an Intermediate Radical. Angewandte Chemie - International Edition, 2008, 47, 5600-5604.	13.8	55
20	Straightforward Synthesis of Dihydrobenzofurans and Benzofurans from Arynes. Organic Letters, 2013, 15, 3938-3941.	4.6	54
21	Insertion of arynes into the carbon–oxygen double bond of amides and its application into the sequential reactions. Tetrahedron, 2012, 68, 179-189.	1.9	53
22	Photocatalytic hydrogenation of acetophenone derivatives and diaryl ketones on polycrystalline titanium dioxide. Catalysis Communications, 2010, 11, 1049-1053.	3.3	50
23	Synthesis of Oxygen Heterocycles via Aromatic C-O Bond Formation Using Arynes. Molecules, 2015, 20, 12558-12575.	3.8	48
24	Selective Synthesis of Allylated Oxime Ethers and Nitrones Based on Palladium-Catalyzed Allylic Substitution of Oximes. Journal of Organic Chemistry, 2005, 70, 5630-5635.	3.2	46
25	[4+2] cycloaddition of intermediates generated from arynes and DMF. Tetrahedron Letters, 2014, 55, 1402-1405.	1.4	46
26	Regio- and Stereocontrolled Palladium- or Iridium-Catalyzed Allylation. Synlett, 2005, 2005, 1641-1655.	1.8	45
27	Zinc-mediated carbon radical addition to glyoxylic imines in aqueous media for the synthesis of $\hat{l}\pm$ -amino acids. Organic and Biomolecular Chemistry, 2005, 3, 1124-1128.	2.8	45
28	Progress in Enantioselective Radical Cyclizations. Chemistry - A European Journal, 2017, 23, 6225-6236.	3.3	44
29	Aqueous-Medium Carbon–Carbon Bond-Forming Radical Reactions Catalyzed by Excited Rhodamine B as a Metal-Free Organic Dye under Visible Light Irradiation. Journal of Organic Chemistry, 2016, 81, 7217-7229.	3.2	41
30	Polarity-Mismatched Addition of Electrophilic Carbon Radicals to an Electron-Deficient Acceptor: Cascade Radical Addition–Cyclization–Trapping Reaction. Journal of Organic Chemistry, 2012, 77, 8588-8604.	3.2	39
31	Kinetic study on photocatalytic hydrogenation of acetophenone derivatives on titanium dioxide. Catalysis Science and Technology, 2014, 4, 1084.	4.1	38
32	Multicomponent Coupling Reaction Using Arynes: Synthesis of Xanthene Derivatives. Journal of Organic Chemistry, 2015, 80, 8464-8469.	3.2	37
33	Solid-phase tandem radical addition–cyclisation reaction of oxime ethers. Chemical Communications, 2001, , 831-832.	4.1	31
34	Inter- and Intramolecular Carbon-Carbon Bond-Forming Radical Reactions. Synlett, 2012, 23, 1709-1724.	1.8	31
35	Adsorptive and Kinetic Properties on Photocatalytic Hydrogenation of Aromatic Ketones upon UV Irradiated Polycrystalline Titanium Dioxide: Differences between Acetophenone and Its Trifluoromethylated Derivative. Journal of Physical Chemistry C, 2012, 116, 17705-17713.	3.1	31
36	Dye-sensitized photo-hydrogenation of aromatic ketones on titanium dioxide under visible light irradiation. Catalysis Communications, 2014, 43, 61-65.	3.3	29

#	Article	IF	Citations
37	Stereoselective Organic Reactions in Heterogeneous Semiconductor Photocatalysis. Frontiers in Chemistry, 2019, 7, 630.	3.6	27
38	Enantioselective synthesis of [1,2]-oxazinone scaffolds and [1,2]-oxazine core structures of FR900482. Tetrahedron, 2008, 64, 1040-1048.	1.9	25
39	Synthesis of chiral oxime ethers based on regio- and enantioselective allylic substitution catalyzed by iridium–pybox complex. Tetrahedron, 2009, 65, 4464-4470.	1.9	25
40	Palladium- or Iridium-Catalyzed Allylic Substitution of Guanidines: Convenient and Direct Modification of Guanidines. Journal of Organic Chemistry, 2009, 74, 305-311.	3.2	24
41	Carbon radical addition–cyclization reaction induced by ruthenium-photocatalyst under visible light irradiation. Tetrahedron, 2015, 71, 773-781.	1.9	24
42	Enantioselective Radical Cyclization for the Synthesis of Cyclic Compounds. Heterocycles, 2009, 79, 229.	0.7	23
43	Cascade radical reaction of substrates with a carbon–carbon triple bond as a radical acceptor. Beilstein Journal of Organic Chemistry, 2013, 9, 1148-1155.	2.2	21
44	Oxidative Functionalization of Cinnamaldehyde Derivatives: Control of Chemoselectivity by Organophotocatalysis and Dual Organocatalysis. Journal of Organic Chemistry, 2018, 83, 8962-8970.	3 . 2	21
45	Three-Component Coupling Reactions of Arynes for the Synthesis of Benzofurans and Coumarins. Molecules, 2014, 19, 863-880.	3 . 8	20
46	Lewis acid-mediated radical cyclization: stereocontrol in cascade radical addition–cyclization–trapping reactions. Organic and Biomolecular Chemistry, 2012, 10, 3519.	2.8	19
47	Direct Photoinduced Electron Transfer from Excited State of Rhodamine B for Carbon-Radical Generation. Synlett, 2015, 26, 265-270.	1.8	18
48	Enantioselective Cascade Radical Addition-Cyclization of Oxime Ethers. Synlett, 2007, 2007, 1885-1888.	1.8	17
49	Photoreductive transformation of fluorinated acetophenone derivatives on titanium dioxide: Defluorination vs. reduction of carbonyl group. Applied Catalysis A: General, 2016, 521, 68-74.	4.3	15
50	Insertion of Arynes into the & Dryshoft amp; amp; amp; amp; amp; amp; amp; amp;	1.6	13
51	Photohydrogenation of Acetophenone Using Coumarin Dye-Sensitized Titanium Dioxide under Visible Light Irradiation. Catalysts, 2015, 5, 1417-1424.	3 . 5	12
52	Transition-Metal-Free Activation of Amide Bond by Arynes. Molecules, 2018, 23, 2145.	3.8	12
53	Photocatalytic single electron transfer reactions on TiO2 semiconductor. Science China Chemistry, 2019, 62, 1439-1449.	8.2	12
54	Photocatalytic Cascade Carbon-Carbon Bond-Forming Radical Reaction in Aqueous Media. Synlett, 2013, 24, 1578-1582.	1.8	11

#	Article	IF	CITATIONS
55	Unique Strategies for Controlling Enantioselective Stereochemistry of Cyclizations via Radical Intermediates. European Journal of Organic Chemistry, 2017, 2017, 3302-3310.	2.4	11
56	Chiral $\hat{1}$ ±-hydroxy acid-coadsorbed TiO2 photocatalysts for asymmetric induction in hydrogenation of aromatic ketones. Chemical Communications, 2018, 54, 12610-12613.	4.1	11
57	Aryne Precursors for Selective Generation of 3-Haloarynes: Preparation and Application to Synthetic Reactions. Journal of Organic Chemistry, 2020, 85, 13544-13556.	3.2	11
58	Regio- and Enantioselective Allylic Substitution with Less Active N- or O-Nucleophiles Catalyzed by Iridium-Complex of Bis(oxazolinyl)pyridine. Chemical and Pharmaceutical Bulletin, 2011, 59, 714-720.	1.3	9
59	Photo-Induced Atom-Transfer Radical Reactions Using Charge–Transfer Complex between Iodine and Tertiary Amine. Chemical and Pharmaceutical Bulletin, 2017, 65, 33-35.	1.3	9
60	Palladium or Iridium-Catalyzed Allylic Substitution of Guanidines having Electron-Withdrawing Substituents. Letters in Organic Chemistry, 2004, 1, 119-121.	0.5	7
61	Iron(III) Chloride Promoted Oxidative Radical Cyclization for the Synthesis of Lactams Having a Quaternary Carbon. Synlett, 2017, 28, 863-867.	1.8	6
62	2,3,4,9-Tetrahydro-9-(3-hydroxy-1,4-dioxo-1H-dihydro-naphthalen-2-yl)-8-methoxy-3,3-dimethyl-1H-xanthen-1-one. MolBank, 2015, 2015, M841.	0.5	5
63	Aqueous-Medium Selective Modification of Cysteine and Related Thiols with Tricyclic Oxygen-Heterocycles. Synthesis, 2017, 49, 4887-4892.	2.3	4
64	Cascade radical reactions via carbon-carbon/heteroatom bond-forming process. Universal Organic Chemistry, 2014, 2, 1.	0.7	4
65	Regiocontrol by Halogen Substituent on Arynes: Generation of 3-Haloarynes and Their Synthetic Reactions. Synthesis, 0, 0, .	2.3	4
66	Oxidation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones by Organophotocatalysis Using Rhodamine 6G under Visible Light Irradiation: Insight into the Reaction Mechanism. Synthesis, 2022, 54, 697-704.	2.3	3
67	Aryne-Mediated Synthesis of Oxygen Heterocycles and Application to Cysteine-Selective Trapping. Heterocycles, 2021, 102, 3.	0.7	2
68	Research and Development of Domino Radical Cyclization Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 895-901.	0.1	1
69	Frontispiece: Progress in Enantioselective Radical Cyclizations. Chemistry - A European Journal, 2017, 23, .	3.3	0
70	Catalytic and Enantioselective C–C Bond Forming Radical Reactions. , 2019, , .		0
71	Recent Advances in Cooperative N-Heterocyclic Carbene Catalysis. , 0, , .		0