
Naoki Toshima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1237839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green Route for Fabrication of Water-Treatable Thermoelectric Generators. Energy Material Advances, 2022, 2022, .	11.0	11
2	Cu-ion-induced n- to p-type switching in organic thermoelectric polyazacycloalkane/carbon nanotubes. Materials Advances, 2022, 3, 373-380.	5.4	6
3	Enhancement of p-type thermoelectric power factor by low-temperature calcination in carbon nanotube thermoelectric films containing cyclodextrin polymer and Pd. Applied Physics Letters, 2021, 118, .	3.3	13
4	Enhancement of the electrical conductivity of defective carbon nanotube sheets for organic hybrid thermoelectrics by deposition of Pd nanoparticles. Materials Advances, 2020, 1, 2926-2936.	5.4	8
5	Combination of nanoparticles and carbon nanotubes for organic hybrid thermoelectrics. Pure and Applied Chemistry, 2020, 92, 967-976.	1.9	1
6	Preparation of Gaâ€ZnO Nanoparticles Using Microwave and Ultrasonic Irradiation, and the Application of Poly(3,4â€ethylenedioxythiophene)â€poly(styrenesulfonate) Hybrid Thermoelectric Films. ChemistrySelect, 2019, 4, 6800-6804.	1.5	6
7	Further study of optical homogeneous effects in nanoparticle embedded liquid-crystal devices. Journal of Molecular Liquids, 2018, 267, 303-307.	4.9	13
8	Kinetics of Spontaneous Bimetallization between Silver and Noble Metal Nanoparticles. Chemistry - an Asian Journal, 2018, 13, 1892-1896.	3.3	7
9	Improvement of stability of n-type super growth CNTs by hybridization with polymer for organic hybrid thermoelectrics. Synthetic Metals, 2017, 225, 81-85.	3.9	19
10	Improved Thermoelectric Behavior of Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Using Poly(<i>N</i> -vinyl-2-pyrrolidone)-coated GeO ₂ Nanoparticles. Chemistry Letters, 2017, 46, 933-936.	1.3	12
11	Hybrid-Type Organic Thermoelectric Materials Containing Nanoparticles as a Carrier Transport Promoter. Journal of Electronic Materials, 2017, 46, 3207-3214.	2.2	17
12	Thermostability of Hybrid Thermoelectric Materials Consisting of Poly(Ni-ethenetetrathiolate), Polyimide and Carbon Nanotubes. Materials, 2017, 10, 824.	2.9	17
13	Novel Nanodispersed Polymer Complex, Poly(nickel 1,1,2,2-ethenetetrathiolate): Preparation and Hybridization for n-Type of Organic Thermoelectric Materials. Chemistry Letters, 2015, 44, 1185-1187.	1.3	24
14	Conducting Polymers and Their Hybrids as Organic Thermoelectric Materials. Journal of Electronic Materials, 2015, 44, 384-390.	2.2	40
15	Novel Hybrid Organic Thermoelectric Materials:Threeâ€Component Hybrid Films Consisting of a Nanoparticle Polymer Complex, Carbon Nanotubes, and Vinyl Polymer. Advanced Materials, 2015, 27, 2246-2251.	21.0	155
16	Synthesis and Catalytic Activity of Crown Jewelâ€ S tructured (IrPd)/Au Trimetallic Nanoclusters. Advanced Materials, 2015, 27, 1383-1388.	21.0	40
17	Zirconia Nanocolloids Having a Nanospace of Poly(cyclodextrin): Preparation and Application to Liquid Crystal Devices. Journal of Nanoscience and Nanotechnology, 2014, 14, 2217-2224.	0.9	4
18	Gold Nanoparticle and Gold Nanorod Embedded PEDOT:PSS Thin Films as Organic Thermoelectric Materials. Iournal of Electronic Materials. 2014. 43. 1492-1497.	2.2	50

Ναοκι Τοςηιμα

#	Article	IF	CITATIONS
19	Synthesis of Au/Pt bimetallic nanoparticles with a Pt-rich shell and their high catalytic activities for aerobic glucose oxidation. Journal of Colloid and Interface Science, 2013, 394, 166-176.	9.4	76
20	Improvement of Thermoelectric Properties of PEDOT/PSS Films by Addition of Gold Nanoparticles: Enhancement of Seebeck Coefficient. Journal of Electronic Materials, 2013, 42, 1882-1887.	2.2	54
21	Crown Jewel catalyst: How neighboring atoms affect the catalytic activity of top Au atoms?. Journal of Catalysis, 2013, 305, 7-18.	6.2	43
22	Polymerâ€Protected and Auâ€Containing Bi―and Trimetallic Nanoparticles as Novel Catalysts for Glucose Oxidation. Macromolecular Symposia, 2012, 317-318, 149-159.	0.7	15
23	Construction and Electro-Optic Properties of Liquid-Crystal Display Doped by Rhodium Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 396-402.	0.9	4
24	Improvement of the Performance of Liquid Crystal Displays by Doping with Supramoleculeâ€Protected Metal Nanoparticles. Israel Journal of Chemistry, 2012, 52, 908-916.	2.3	5
25	Organic Thermoelectric Materials Composed of Conducting Polymers and Metal Nanoparticles. Journal of Electronic Materials, 2012, 41, 1735-1742.	2.2	63
26	Syntheses of poly(cyclodextrin)-stabilised metal nanoparticles and their quenching abilities of active oxygen species. Supramolecular Chemistry, 2011, 23, 195-198.	1.2	8
27	Fabrication of Liquid Crystal Sol Containing Capped Agâ^'Pd Bimetallic Nanoparticles and Their Electro-Optic Properties. Journal of Physical Chemistry C, 2008, 112, 20284-20290.	3.1	41
28	Synthesis and Catalysis of Polymer-Protected Pd/Ag/Rh Trimetallic Nanoparticles with a Core–Shell Structure. Bulletin of the Chemical Society of Japan, 2007, 80, 1217-1225.	3.2	33
29	Trimetallic nanoparticles having a Au-core structure. Catalysis Today, 2007, 122, 239-244.	4.4	98
30	Dielectric Spectroscopy of Metal Nanoparticle Doped Liquid Crystal Displays Exhibiting Frequency Modulation Response. Journal of Display Technology, 2006, 2, 121-129.	1.2	75
31	Spontaneous Formation of Core/Shell Bimetallic Nanoparticles:  A Calorimetric Study. Journal of Physical Chemistry B, 2005, 109, 16326-16331.	2.6	78
32	Fast Switching of Frequency Modulation Twisted Nematic Liquid Crystal Display Fabricated by Doping Nanoparticles and Its Mechanism. Japanese Journal of Applied Physics, 2004, 43, 2580-2584.	1.5	63
33	Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Doped with Palladium (Pd) Nanoparticles. Japanese Journal of Applied Physics, 2004, 43, 5425-5429.	1.5	34
34	Dielectric Properties of Frequency Modulation Twisted Nematic LCDs Doped with Silver Nanoparticles. Japanese Journal of Applied Physics, 2004, 43, 5430-5434.	1.5	32
35	Facile Fabrication of Agâ "Pd Bimetallic Nanoparticles in Ultrathin TiO2-Gel Films:Â Nanoparticle Morphology and Catalytic Activity. Journal of the American Chemical Society, 2003, 125, 11034-11040.	13.7	223
36	Preparation and Catalysis of Inverted Core/Shell Structured Pd/Au Bimetallic Nanoparticles. Australian Journal of Chemistry, 2003, 56, 1025.	0.9	36

Ναοκι Τοςηιμα

#	Article	IF	CITATIONS
37	Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Applied Physics Letters, 2002, 81, 2845-2847.	3.3	235
38	Frequency Modulation Response of a Tunable Birefringent Mode Nematic Liquid Crystal Electrooptic Device Fabricated by Doping Nanoparticles of Pd Covered with Liquid-Crystal Molecules. Japanese Journal of Applied Physics, 2002, 41, L1315-L1317.	1.5	48
39	Effect of additional metal ions on catalyses of polymer-stabilized metal nanoclusters. Journal of Molecular Catalysis A, 2001, 177, 139-147.	4.8	40
40	Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Applied Organometallic Chemistry, 2001, 15, 178-196.	3.5	168
41	Electrocatalysis for proton reduction by polypyridyl platinum complexes dispersed in a polymer membrane. European Polymer Journal, 2001, 37, 753-761.	5.4	16
42	Selective synthesis of 2,6-naphthalenedicarboxylic acid by use of cyclodextrin as catalyst. Journal of Molecular Catalysis A, 1999, 139, 149-158.	4.8	12
43	Colloidal silver catalysts for oxidation of ethylene. Journal of Molecular Catalysis A, 1999, 141, 187-192.	4.8	169