Jian Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1237148/publications.pdf Version: 2024-02-01

LIAN SONG

#	Article	lF	CITATIONS
1	Charge transfer modification of inverted planar perovskite solar cells by NiO _{x } /Sr:NiO _x bilayer hole transport layer. Chinese Physics B, 2022, 31, 038801.	1.4	7
2	Fieldâ€Effect Control in Hole Transport Layer Composed of Li:NiO/NiO for Highly Efficient Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, 2101562.	3.7	12
3	Highâ€Performance Humidity Sensor Based on CsPdBr ₃ Nanocrystals for Noncontact Sensing of Hydromechanical Characteristics of Unsaturated Soil. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	20
4	Interface modification by Fmoc-Met-OH molecule for high-efficient perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 15359-15368.	2.2	2
5	Surface modification of perovskite film by an amino acid derivative for perovskite solar cell. Organic Electronics, 2022, 108, 106598.	2.6	10
6	The optical and electrical properties regulation of TiO2 mesoporous thin film in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 277-289.	2.2	1
7	A pâ€p ⁺ Homojunctionâ€Enhanced Hole Transfer in Inverted Planar Perovskite Solar Cells. ChemSusChem, 2021, 14, 1396-1403.	6.8	20
8	Charge transfer enhancement of TiO2/perovskite interface in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 22936-22943.	2.2	6
9	Synergistic Effect of NiO and Spiro-OMeTAD for Hole Transfer in Perovskite Solar Cells. Journal of Electronic Materials, 2021, 50, 6512-6517.	2.2	5
10	Inverted planar perovskite solar cells featuring ligand-protecting colloidal NiO nanocrystals hole transport layer. Vacuum, 2020, 172, 109077.	3.5	12
11	Surface Modification of NiO Nanoparticles for Highly Stable Perovskite Solar Cells Based on All-Inorganic Charge Transfer Layers. Journal of Electronic Materials, 2020, 49, 6300-6307.	2.2	5
12	Efficiency enhancement of perovskite solar cells based on Al2O3-passivated nano-nickel oxide film. Journal of Materials Science, 2020, 55, 13881-13891.	3.7	12
13	Mixed-solvothermal synthesis and morphology-dependent electrochemical properties of α-Fe2O3 nanoparticles for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 6779-6785.	2.2	7
14	Cu-doped nickel oxide hole transporting layer via efficient low-temperature spraying combustion method for perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 15627-15635.	2.2	12
15	High-quality NiO thin film by low-temperature spray combustion method for perovskite solar cells. Journal of Alloys and Compounds, 2019, 810, 151970.	5.5	36
16	Enhanced Photoelectrochemical Activities of ZnO Nanorod Arrays After a Modification of ZnS or ZnIn2S4. Journal of Electronic Materials, 2019, 48, 7345-7351.	2.2	10
17	Performance enhancement of perovskite solar cells via Nb/Ta-doped TiO2 mesoporous layers. Journal of Materials Science: Materials in Electronics, 2019, 30, 9038-9044.	2.2	1
18	Butanol-assisted solvent annealing of CH3NH3PbI3 film for high-efficient perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 746-752.	2.2	9

Jian Song

#	Article	IF	CITATIONS
19	THE ROLE OF Br AS DOPANT ON THE STRUCTURAL AND CHARGE TRANSPORT PROPERTIES IN CH ₃ NH ₃ Pbl3â^xâ^yBr _{<i>x</i>} Cl _{<i>y</i>} MIXED-HALIDE PEROVSKITE FOR HYBRID SOLAR CELLS. Surface Review and Letters, 2019, 26, 1850137.	1.1	0
20	Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO. Vacuum, 2018, 148, 201-205.	3.5	16
21	Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 217, 18-25.	3.5	45
22	Surface engineering of perovskite films for efficient solar cells. Scientific Reports, 2017, 7, 14478.	3.3	50
23	Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. Journal of Alloys and Compounds, 2017, 694, 1232-1238.	5.5	70
24	Improved performance of perovskite solar cell by controlling CH3NH3PbI3â^'xClx film morphology with CH3NH3Cl-assisted method. Journal of Materials Science: Materials in Electronics, 2016, 27, 10869-10876.	2.2	15
25	Improving the photovoltaic performance of perovskite solar cells with acetate. Scientific Reports, 2016, 6, 38670.	3.3	55
26	Ammonium-iodide-salt additives induced photovoltaic performance enhancement in one-step solution process for perovskite solar cells. Journal of Alloys and Compounds, 2016, 684, 84-90.	5.5	59
27	Enhancing current density of perovskite solar cells using TiO2-ZrO2 composite scaffold layer. Materials Science in Semiconductor Processing, 2016, 56, 29-36.	4.0	33
28	Benzo[<i>a</i>]carbazole-Based Donorâ^'ï€â€"Acceptor Type Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9015-9022.	8.0	102
29	CNT–G–TiO ₂ layer as a bridge linking TiO ₂ nanotube arrays and substrates for efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 43805-43809.	3.6	13
30	Enhancement of diffusion kinetics in porous MoN nanorods-based counter electrode in a dye-sensitized solar cell. Journal of Materials Chemistry A, 2014, 2, 10041.	10.3	53
31	Metal sulfide counter electrodes for dye-sensitized solar cells: A balanced strategy for optical transparency and electrochemical activity. Journal of Power Sources, 2014, 266, 464-470.	7.8	28
32	Synergistic effect of molybdenum nitride and carbon nanotubes on electrocatalysis for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 20580.	6.7	69
33	Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 1339-1342.	2.8	171
34	TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2012, 65, 216-220.	5.2	87
35	Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 1680.	30.8	390