Zhimeng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236985/publications.pdf

Version: 2024-02-01

		516710	361022
39	1,273	16	35
papers	citations	h-index	g-index
40	40	40	1460
40	40	40	1400
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanobody-Based Bispecific Neutralizer for Shiga Toxin-Producing <i>E.Âcoli</i> . ACS Infectious Diseases, 2022, 8, 321-329.	3.8	6
2	\hat{l}^2 -Galactosidase-dependent metabolic glycoengineering of tumor cells for imaging and immunotherapy. Chemical Communications, 2022, 58, 2568-2571.	4.1	5
3	MUC1 vaccines using \hat{I}^2 -cyclodextrin grafted chitosan (CS-g-CD) as carrier via host-guest interaction elicit robust immune responses. Chinese Chemical Letters, 2022, 33, 4882-4885.	9.0	11
4	Chemical Synthesis of Antibody–Hapten Conjugates Capable of Recruiting the Endogenous Antibody to Magnify the Fc Effector Immunity of Antibody for Cancer Immunotherapy. Journal of Medicinal Chemistry, 2022, 65, 323-332.	6.4	8
5	Synthesis of DNP-modified GM3-based anticancer vaccine and evaluation of its immunological activities for cancer immunotherapy. Chinese Chemical Letters, 2021, 32, 4041-4044.	9.0	7
6	Exendin 4-Hapten Conjugate Capable of Binding with Endogenous Antibodies for Peptide Half-life Extension and Exerting Long-Acting Hypoglycemic Activity. Journal of Medicinal Chemistry, 2021, 64, 4947-4959.	6.4	8
7	Dinitrophenolâ€Hyaluronan Conjugates as Multivalent Antibodyâ€Recruiting Glycopolymers for Targeted Cancer Immunotherapy. ChemMedChem, 2021, 16, 2960-2968.	3.2	7
8	Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting diverse and conserved epitopes. Nature Communications, 2021, 12, 4676.	12.8	74
9	Dinitrophenol-mediated modulation of an anti-PD-L1 VHH for Fc-dependent effector functions and prolonged serum half-life. European Journal of Pharmaceutical Sciences, 2021, 165, 105941.	4.0	9
10	Universal endogenous antibody recruiting nanobodies capable of triggering immune effectors for targeted cancer immunotherapy. Chemical Science, 2021, 12, 4623-4630.	7.4	18
11	Nanobodyâ€Engineered Natural Killer Cell Conjugates for Solid Tumor Adoptive Immunotherapy. Small, 2021, 17, e2103463.	10.0	20
12	Rhamnose modified bovine serum albumin as a carrier protein promotes the immune response against sTn antigen. Chemical Communications, 2020, 56, 13959-13962.	4.1	16
13	Site-selective modification of exendin 4 with variable molecular weight dextrans by oxime-ligation chemistry for improving type 2 diabetic treatment. Carbohydrate Polymers, 2020, 249, 116864.	10.2	7
14	Comprehensive Analysis of the Glycome and Glycoproteome of Bovine Milk-Derived Exosomes. Journal of Agricultural and Food Chemistry, 2020, 68, 12692-12701.	5 . 2	29
15	Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. Carbohydrate Research, 2020, 493, 108032.	2.3	76
16	Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies. Chemical Science, 2019, 10, 9331-9338.	7.4	25
17	A two-stage glycine supplementation strategy enhances the extracellular expression of sortase A in Escherichia coli. Process Biochemistry, 2019, 76, 11-17.	3.7	1
18	Design and synthesis of novel dual-cyclic RGD peptides for $\hat{l}\pm\nu\hat{l}^23$ integrin targeting. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 896-900.	2.2	17

#	Article	IF	CITATIONS
19	Enzymatic On-Resin Peptide Cleavage and in Situ Cyclization One-Pot Strategy for the Synthesis of Cyclopeptide and Cyclotide. Journal of Organic Chemistry, 2018, 83, 14078-14083.	3.2	12
20	Immobilization of Staphylococcus aureus Sortase A on Chitosan Particles and Its Applications in Peptide-to-Peptide Ligation and Peptide Cyclization. Molecules, 2018, 23, 192.	3.8	2
21	New potent and selective $\hat{l}\pm v\hat{l}^23$ integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1911-1913.	2.2	10
22	Efficient extracellular expression of transpeptidase sortase A in Pichia pastoris. Protein Expression and Purification, 2017, 133, 132-138.	1.3	3
23	Sortase A-mediated on-resin peptide cleavage and in situ ligation: an efficient one-pot strategy for the synthesis of functional peptides and proteins. Organic Chemistry Frontiers, 2017, 4, 2058-2062.	4.5	10
24	Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody–drug conjugates. Nature Protocols, 2017, 12, 1702-1721.	12.0	87
25	Sortase A-mediated crosslinked short-chain dehydrogenases/reductases as novel biocatalysts with improved thermostability and catalytic efficiency. Scientific Reports, 2017, 7, 3081.	3.3	10
26	One-step purification and immobilization of extracellularly expressed sortase A by magnetic particles to develop a robust and recyclable biocatalyst. Scientific Reports, 2017, 7, 6561.	3.3	14
27	Efficient expression of sortase A from Staphylococcus aureus in Escherichia coli and its enzymatic characterizations. Bioresources and Bioprocessing, 2017, 4, 13.	4.2	18
28	Aspartic Acid Side-Chain Benzyl Ester as a Multifunctionalization Precursor for Synthesis of Branched and Cyclic Arginylglycylaspartic Acid Peptides. Synlett, 2017, 28, 1966-1970.	1.8	5
29	One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody–drug conjugates. Organic and Biomolecular Chemistry, 2016, 14, 9501-9518.	2.8	88
30	A new strategy for synthesis of branched cyclic peptide by Asn side-chain hydrazide ligation. Chinese Chemical Letters, 2015, 26, 946-950.	9.0	9
31	Chemoenzymatic Synthesis of the Human CD52 and CD24 Antigen Analogues. Organic Letters, 2013, 15, 5906-5908.	4.6	11
32	Sortase A-mediated chemoenzymatic synthesis of complex glycosylphosphatidylinositol-anchored protein. Chemical Communications, 2013, 49, 11689.	4.1	23
33	New Method for Site-Specific Modification of Liposomes with Proteins Using Sortase A-Mediated Transpeptidation. Bioconjugate Chemistry, 2012, 23, 650-655.	3.6	40
34	Chemoenzymatic Glycoengineering of Intact IgG Antibodies for Gain of Functions. Journal of the American Chemical Society, 2012, 134, 12308-12318.	13.7	272
35	Sortase-Mediated Transpeptidation for Site-Specific Modification of Peptides, Glycopeptides, and Proteins. Journal of Carbohydrate Chemistry, 2012, 31, 48-66.	1.1	35
36	Chemoenzymatic Synthesis and Fcî³ Receptor Binding of Homogeneous Glycoforms of Antibody Fc Domain. Presence of a Bisecting Sugar Moiety Enhances the Affinity of Fc to Fcî³llla Receptor. Journal of the American Chemical Society, 2011, 133, 18975-18991.	13.7	135

ZHIMENG Wu

#	Article	IF	CITATIONS
37	Sortase A-catalyzed peptide cyclization for the synthesis of macrocyclic peptides and glycopeptides. Chemical Communications, 2011, 47, 9218.	4.1	71
38	Sortase A-Catalyzed Transpeptidation of Glycosylphosphatidylinositol Derivatives for Chemoenzymatic Synthesis of GPI-Anchored Proteins. Journal of the American Chemical Society, 2010, 132, 1567-1571.	13.7	72
39	Chemoenzymatic synthesis of $6\hat{a} \in 2$ -sialolactose-modified nanobody. Journal of Carbohydrate Chemistry, 0, , 1-15.	1.1	2