List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236022/publications.pdf Version: 2024-02-01

		3325	5663
305	30,137	91	162
papers	citations	h-index	g-index
359 all docs	359 docs citations	359 times ranked	25391 citing authors

ALAN CROZIER

#	Article	IF	CITATIONS
1	Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants and Redox Signaling, 2013, 18, 1818-1892.	2.5	1,938
2	Dietary phenolics: chemistry, bioavailability and effects on health. Natural Product Reports, 2009, 26, 1001.	5.2	1,610
3	Plant Foods and Herbal Sources of Resveratrol. Journal of Agricultural and Food Chemistry, 2002, 50, 3337-3340.	2.4	840
4	Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. Journal of Agricultural and Food Chemistry, 1997, 45, 590-595.	2.4	596
5	Plasma antioxidants from chocolate. Nature, 2003, 424, 1013-1013.	13.7	484
6	Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Archives of Toxicology, 2014, 88, 1803-1853.	1.9	472
7	How should we assess the effects of exposure to dietary polyphenols in vitro?. American Journal of Clinical Nutrition, 2004, 80, 15-21.	2.2	443
8	Bioavailability of dietary flavonoids and phenolic compounds. Molecular Aspects of Medicine, 2010, 31, 446-467.	2.7	439
9	Occurrence of Flavonols in Tomatoes and Tomato-Based Products. Journal of Agricultural and Food Chemistry, 2000, 48, 2663-2669.	2.4	404
10	HPLC-MSnAnalysis of Phenolic Compounds and Purine Alkaloids in Green and Black Tea. Journal of Agricultural and Food Chemistry, 2004, 52, 2807-2815.	2.4	387
11	Coffee: biochemistry and potential impact on health. Food and Function, 2014, 5, 1695-1717.	2.1	376
12	Relationship among Antioxidant Activity, Vasodilation Capacity, and Phenolic Content of Red Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 220-230.	2.4	369
13	The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1054-1112.	5.9	362
14	Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. British Journal of Nutrition, 2006, 96, 107.	1.2	350
15	Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption. Drug Metabolism and Disposition, 2009, 37, 1749-1758.	1.7	343
16	Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries. Journal of Agricultural and Food Chemistry, 2010, 58, 3901-3909.	2.4	337
17	Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry, 2008, 69, 841-856.	1.4	328
18	Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. Journal of Agricultural and Food Chemistry, 2002, 50, 5191-5196.	2.4	312

#	Article	IF	CITATIONS
19	Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 2004, 84, 1553-1561.	1.7	301
20	Red wine procyanidins and vascular health. Nature, 2006, 444, 566-566.	13.7	298
21	Berry flavonoids and phenolics: bioavailability and evidence of protective effects. British Journal of Nutrition, 2010, 104, S67-S90.	1.2	288
22	Polyphenols and health: What compounds are involved?. Nutrition, Metabolism and Cardiovascular Diseases, 2010, 20, 1-6.	1.1	285
23	The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. European Journal of Nutrition, 2006, 45, 113-122.	1.8	275
24	The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. British Journal of Nutrition, 2005, 94, 170-181.	1.2	266
25	Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports, 2017, 34, 1391-1421.	5.2	257
26	The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell and Environment, 2001, 24, 1189-1197.	2.8	256
27	Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. American Journal of Clinical Nutrition, 1999, 69, 87-94.	2.2	254
28	Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum) Tj ETQq0	0 0 rgBT 1.7	Overlock 10
29	Caffeine: a well known but little mentioned compound in plant science. Trends in Plant Science, 2001, 6, 407-413.	4.3	243
30	Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. Journal of the Science of Food and Agriculture, 2003, 83, 496-502.	1.7	236
31	Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC–MSn. Phytochemistry, 2003, 64, 617-624.	1.4	230
32	Green Tea Flavan-3-ols: Colonic Degradation and Urinary Excretion of Catabolites by Humans. Journal of Agricultural and Food Chemistry, 2010, 58, 1296-1304.	2.4	229
33	Bioavailability of Anthocyanins and Ellagitannins Following Consumption of Raspberries by Healthy Humans and Subjects with an Ileostomy. Journal of Agricultural and Food Chemistry, 2010, 58, 3933-3939.	2.4	225
34	Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Archives of Biochemistry and Biophysics, 2010, 501, 98-105.	1.4	217
35	Evaluation of Phenolic Compounds in Commercial Fruit Juices and Fruit Drinks. Journal of Agricultural and Food Chemistry, 2007, 55, 3148-3157.	2.4	216
36	Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annual Review of Food Science and Technology, 2017, 8, 155-180.	5.1	204

#	Article	IF	CITATIONS
37	Caffeine synthase gene from tea leaves. Nature, 2000, 406, 956-957.	13.7	199
38	The metabolome of [2-14C](â^)-epicatechin in humans: implications for the assessment of efficacy, safety and mechanisms of action of polyphenolic bioactives. Scientific Reports, 2016, 6, 29034.	1.6	197
39	Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. American Journal of Clinical Nutrition, 2013, 98, 1619S-1630S.	2.2	192
40	Absorption, metabolism and excretion of Choladi green tea flavanâ€3â€ols by humans. Molecular Nutrition and Food Research, 2009, 53, S44-53.	1.5	190
41	Potential Health Benefits of Berries. Current Nutrition and Food Science, 2005, 1, 71-86.	0.3	188
42	Survey of the Free and Conjugated Myricetin and Quercetin Content of Red Wines of Different Geographical Origins. Journal of Agricultural and Food Chemistry, 1998, 46, 368-375.	2.4	181
43	Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 1988, 175, 532-538.	1.6	180
44	Plant-derived phenolic antioxidants. Current Opinion in Lipidology, 2000, 11, 43-47.	1.2	179
45	Absorption, metabolism, and excretion of green tea flavanâ€3â€ols in humans with an ileostomy. Molecular Nutrition and Food Research, 2010, 54, 323-334.	1.5	178
46	On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Molecular Nutrition and Food Research, 2005, 49, 52-60.	1.5	177
47	The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radical Research, 2006, 40, 1035-1046.	1.5	176
48	Phenyl-Î ³ -valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Natural Product Reports, 2019, 36, 714-752.	5.2	170
49	Antiglycative and neuroprotective activity of colonâ€derived polyphenol catabolites. Molecular Nutrition and Food Research, 2011, 55, S35-43.	1.5	168
50	Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking?. Food and Function, 2014, 5, 1718-1726.	2.1	168
51	Absorption and excretion of conjugated flavonols, including quercetin-4′-O-β-glucoside and isorhamnetin-4′-O-β-glucoside by human volunteers after the consumption of onions. Free Radical Research, 1998, 29, 257-269.	1.5	167
52	Bioavailability of Pelargonidin-3- <i>O</i> -glucoside and Its Metabolites in Humans Following the Ingestion of Strawberries with and without Cream. Journal of Agricultural and Food Chemistry, 2008, 56, 713-719.	2.4	167
53	The biological activities of 26 gibberellins in nine plant bioassays. Canadian Journal of Botany, 1970, 48, 867-877.	1.2	166
54	Colonic Catabolism of Ellagitannins, Ellagic Acid, and Raspberry Anthocyanins: In Vivo and In Vitro Studies. Drug Metabolism and Disposition, 2011, 39, 1680-1688.	1.7	165

#	Article	IF	CITATIONS
55	Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes, 1999, 48, 176-181.	0.3	162
56	New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radical Biology and Medicine, 2015, 89, 758-769.	1.3	150
57	Effect of Freezing and Storage on the Phenolics, Ellagitannins, Flavonoids, and Antioxidant Capacity of Red Raspberries. Journal of Agricultural and Food Chemistry, 2002, 50, 5197-5201.	2.4	146
58	Berry (Poly)phenols and Cardiovascular Health. Journal of Agricultural and Food Chemistry, 2014, 62, 3842-3851.	2.4	146
59	Bioavailability and Metabolism of Orange Juice Flavanones in Humans: Impact of a Full-Fat Yogurt. Journal of Agricultural and Food Chemistry, 2008, 56, 11157-11164.	2.4	145
60	Espresso coffees, caffeine and chlorogenic acid intake: potential health implications. Food and Function, 2012, 3, 30-33.	2.1	142
61	Extraction of Phenolics and Changes in Antioxidant Activity of Red Wines during Vinification. Journal of Agricultural and Food Chemistry, 2001, 49, 5797-5808.	2.4	139
62	Quantitative analysis of flavonoids by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1997, 761, 315-321.	1.8	137
63	Plant-derived phenolic antioxidants. Current Opinion in Clinical Nutrition and Metabolic Care, 2000, 3, 447-451.	1.3	135
64	Wine by-Products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties. Molecules, 2014, 19, 482-506.	1.7	134
65	Orange juice (poly)phenols are highly bioavailable in humans. American Journal of Clinical Nutrition, 2014, 100, 1378-1384.	2.2	133
66	Biosynthesis of Caffeine in Leaves of Coffee. Plant Physiology, 1996, 111, 747-753.	2.3	123
67	Flavonoid and chlorogenic acid profiles of English cider apples. Journal of the Science of Food and Agriculture, 2007, 87, 719-728.	1.7	123
68	Purification and Characterization of Caffeine Synthase from Tea Leaves1. Plant Physiology, 1999, 120, 579-586.	2.3	122
69	Antioxidant flavonols from fruits, vegetables and beverages: measurements and bioavailability. Biological Research, 2000, 33, 79-88.	1.5	118
70	Determination of Flavonol Metabolites in Plasma and Tissues of Rats by HPLCâ^'Radiocounting and Tandem Mass Spectrometry Following Oral Ingestion of [2-14C]Quercetin-4â€~-glucoside. Journal of Agricultural and Food Chemistry, 2002, 50, 6902-6909.	2.4	117
71	Bioavailability of Polyphenon E Flavan-3-ols in Humans with an Ileostomy4. Journal of Nutrition, 2008, 138, 1535S-1542S.	1.3	117
72	In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radical Biology and Medicine, 2009, 47, 1180-1189.	1.3	117

#	Article	IF	CITATIONS
73	Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radical Biology and Medicine, 2011, 51, 454-463.	1.3	117
74	Chromatography of 33 gibberellins on a gradient eluted silica gel partition column. Phytochemistry, 1972, 11, 3029-3033.	1.4	116
75	Milk decreases urinary excretion but not plasma pharmacokinetics of cocoa flavan-3-ol metabolites in humans. American Journal of Clinical Nutrition, 2009, 89, 1784-1791.	2.2	114
76	Absorption, metabolism, distribution and excretion of (â^')-epicatechin: A review of recent findings. Molecular Aspects of Medicine, 2018, 61, 18-30.	2.7	113
77	The influence of moderate red wine consumption on antioxidant status and indices of oxidative stress associated with CHD in healthy volunteers. British Journal of Nutrition, 2005, 93, 233-240.	1.2	110
78	Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 2005, 38, 357-367.	2.9	110
79	Bioavailability of [2- ¹⁴ C]Quercetin-4′-glucoside in Rats. Journal of Agricultural and Food Chemistry, 2008, 56, 12127-12137.	2.4	107
80	Gastrointestinal stability and bioavailability of (poly)phenolic compounds following ingestion of Concord grape juice by humans. Molecular Nutrition and Food Research, 2012, 56, 497-509.	1.5	106
81	Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry, 2010, 71, 559-566.	1.4	105
82	Phytochemical Profiles of Black, Red, Brown, and White Rice from the Camargue Region of France. Journal of Agricultural and Food Chemistry, 2013, 61, 7976-7986.	2.4	105
83	The bioavailability of raspberry anthocyanins and ellagitannins in rats. Molecular Nutrition and Food Research, 2007, 51, 714-725.	1.5	103
84	Biosynthesis and Metabolism of Caffeine and Related Purine Alkaloids in Plants. Advances in Botanical Research, 1999, 30, 117-205.	0.5	100
85	In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovascular Diabetology, 2017, 16, 80.	2.7	99
86	Bioavailability of Coffee Chlorogenic Acids and Green Tea Flavan-3-ols. Nutrients, 2010, 2, 820-833.	1.7	98
87	Analysis of Indole-3-Acetic Acid and Related Indoles in Culture Medium from <i>Azospirillum lipoferum</i> and <i>Azospirillum brasilense</i> . Applied and Environmental Microbiology, 1988, 54, 2833-2837.	1.4	98
88	Identification of (Poly)phenolic Compounds in Concord Grape Juice and Their Metabolites in Human Plasma and Urine after Juice Consumption. Journal of Agricultural and Food Chemistry, 2011, 59, 9512-9522.	2.4	95
89	Caffeine biosynthesis in young leaves of Camellia sinensis: In vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiologia Plantarum, 1996, 98, 629-636.	2.6	94
90	On-line HPLC analysis of the antioxidant activity of phenolic compounds in brewed, paper-filtered coffee. Brazilian Journal of Plant Physiology, 2006, 18, 253-262.	0.5	94

#	Article	IF	CITATIONS
91	Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. Journal of Agricultural and Food Chemistry, 2017, 65, 5365-5374.	2.4	94
92	Rapid characterization of anthocyanins in red raspberry fruit by high-performance liquid chromatography coupled to single quadrupole mass spectrometry. Journal of Chromatography A, 2002, 966, 63-70.	1.8	93
93	Comparison of the polyphenolic composition and antioxidant activity of European commercial fruit juices. Food and Function, 2010, 1, 73.	2.1	92
94	Identification of Proanthocyanidin Dimers and Trimers, Flavone <i>C</i> -Glycosides, and Antioxidants in Ficus deltoidea, a Malaysian Herbal Tea. Journal of Agricultural and Food Chemistry, 2011, 59, 1363-1369.	2.4	92
95	A structural basis for the inhibition of collagenâ€stimulated platelet function by quercetin and structurally related flavonoids. British Journal of Pharmacology, 2010, 159, 1312-1325.	2.7	91
96	Bioavailability of dietary (poly)phenols: a study with ileostomists to discriminate between absorption in small and large intestine. Food and Function, 2013, 4, 754.	2.1	91
97	Impact of dose on the bioavailability of coffee chlorogenic acids in humans. Food and Function, 2014, 5, 1727-1737.	2.1	91
98	Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing theAgrobacterium rhizogenes rolBgene. Plant Journal, 1993, 3, 681-689.	2.8	89
99	Flavonoids in Tropical Citrus Species. Journal of Agricultural and Food Chemistry, 2011, 59, 12217-12225.	2.4	89
100	Prediction of dietary flavonol consumption from fasting plasma concentration or urinary excretion. European Journal of Clinical Nutrition, 2000, 54, 143-149.	1.3	88
101	Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biology, 2010, 10, 172.	1.6	87
102	Phytochemical profile of a Japanese black–purple rice. Food Chemistry, 2013, 141, 2821-2827.	4.2	87
103	Bioavailability of <i>C</i> -Linked Dihydrochalcone and Flavanone Glucosides in Humans Following Ingestion of Unfermented and Fermented Rooibos Teas. Journal of Agricultural and Food Chemistry, 2009, 57, 7104-7111.	2.4	86
104	Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies. American Journal of Clinical Nutrition, 2017, 105, 352-360.	2.2	86
105	Variations in the Profile and Content of Anthocyanins in Wines Made from Cabernet Sauvignon and Hybrid Grapes. Journal of Agricultural and Food Chemistry, 2002, 50, 4096-4102.	2.4	85
106	Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Molecular Nutrition and Food Research, 2009, 53, S68-75.	1.5	85
107	Identification of Plasma and Urinary Metabolites and Catabolites Derived from Orange Juice (Poly)phenols: Analysis by High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2016, 64, 5724-5735.	2.4	83
108	Effects of Waterlogging on the Gibberellin Content and Growth of Tomato Plants. Journal of Experimental Botany, 1971, 22, 39-48.	2.4	82

#	Article	IF	CITATIONS
109	Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radical Biology and Medicine, 2015, 84, 206-214.	1.3	80
110	Bioavailability of multiple components following acute ingestion of a polyphenolâ€rich juice drink. Molecular Nutrition and Food Research, 2010, 54, S268-77.	1.5	78
111	A new caffeine biosynthetic pathway in tea leaves: utilisation of adenosine released from the S -adenosyl-L -methionine cycle. FEBS Letters, 2001, 499, 50-54.	1.3	77
112	Metabolism of Caffeine and Related Purine Alkaloids in Leaves of Tea (Camellia sinensis L.). Plant and Cell Physiology, 1997, 38, 413-419.	1.5	75
113	Theacrine (1,3,7,9-tetramethyluric acid) synthesis in leaves of a Chinese tea, kucha (Camellia assamica) Tj ETQq1 1	0.78431 1.4	4 ₇ gBT /Ov∈
114	Severe, Acute Liver Injury and Khat Leaves. New England Journal of Medicine, 2010, 362, 1642-1644.	13.9	75
115	The effects of flooding on the export of gibberellins from the root to the shoot. Planta, 1969, 89, 376-379.	1.6	74
116	Secondary Metabolites in Fruits, Vegetables, Beverages and Other Plant-based Dietary Components. , 0, , 208-302.		73
117	Absorption, Metabolism, and Excretion of Cider Dihydrochalcones in Healthy Humans and Subjects with an Ileostomy. Journal of Agricultural and Food Chemistry, 2009, 57, 2009-2015.	2.4	72
118	In vitro colonic catabolism of orange juice (poly)phenols. Molecular Nutrition and Food Research, 2015, 59, 465-475.	1.5	71
119	Trimethylamine-N-Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide. Molecules, 2018, 23, 549.	1.7	71
120	Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food and Function, 2013, 4, 52-62.	2.1	70
121	Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Advances in Nutrition, 2017, 8, 694-704.	2.9	70
122	Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta, 1987, 171, 422-428.	1.6	69
123	DISPOSITION AND METABOLISM OF [2-14C]QUERCETIN-4′-GLUCOSIDE IN RATS. Drug Metabolism and Disposition, 2005, 33, 1036-1043.	1.7	69
124	Radioactivity monitor for high-performance liquid chromatography. Journal of Chromatography A, 1977, 137, 271-282.	1.8	68
125	Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health. Phytochemistry Reviews, 2015, 14, 765-798.	3.1	66
126	Purine salvage in plants. Phytochemistry, 2018, 147, 89-124.	1.4	65

#	Article	IF	CITATIONS
127	Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. American Journal of Clinical Nutrition, 2020, 112, 1051-1068.	2.2	65
128	Catabolism of caffeine and related purine alkaloids in leaves ofCoffea arabica L Planta, 1996, 198, 334-339.	1.6	64
129	The effect of black tea on risk factors of cardiovascular disease in a normal population. Preventive Medicine, 2012, 54, S98-S102.	1.6	63
130	Analysis of picogram quantities of indole-3-acetic acid by high performance liquid chromatography-fluorescence procedures. Planta, 1980, 150, 366-370.	1.6	62
131	Do roots synthesize gibberellins?. Canadian Journal of Botany, 1971, 49, 967-975.	1.2	61
132	In vitro and in vivo conjugation of dietary hydroxycinnamic acids by UDP-glucuronosyltransferases and sulfotransferases in humans. Journal of Nutritional Biochemistry, 2010, 21, 1060-1068.	1.9	61
133	Flavonoid metabolites in human plasma and urine after the consumption of red onions: analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric detection. Journal of Chromatography A, 2004, 1058, 163-168.	1.8	61
134	Gastrointestinal absorption and metabolism of hesperetinâ€7â€ <i>O</i> â€rutinoside and hesperetinâ€7â€ <i>O</i> â€glucoside in healthy humans. Molecular Nutrition and Food Research, 2015, 59, 1651-1662.	1.5	59
135	Use of Accurate Mass Full Scan Mass Spectrometry for the Analysis of Anthocyanins in Berries and Berry-Fed Tissues. Journal of Agricultural and Food Chemistry, 2010, 58, 3910-3915.	2.4	58
136	Persistence of Anticancer Activity in Berry Extracts after Simulated Gastrointestinal Digestion and Colonic Fermentation. PLoS ONE, 2012, 7, e49740.	1.1	58
137	Comparison of <i>in vivo</i> and <i>in vitro</i> digestion on polyphenol composition in lingonberries: Potential impact on colonic health. BioFactors, 2014, 40, 611-623.	2.6	58
138	CCC-Induced increase of gibberellin levels in pea seedlings. Planta, 1970, 94, 95-106.	1.6	57
139	An Assessment of Gibberellin Structure-activity Relationships. Journal of Experimental Botany, 1974, 25, 431-445.	2.4	55
140	First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Organic and Biomolecular Chemistry, 2010, 8, 5199.	1.5	53
141	The biosynthesis of indole-3-acetic acid byFrankia. Plant and Soil, 1984, 78, 99-104.	1.8	52
142	Berry juices, teas, antioxidants and the prevention of atherosclerosis in hamsters. Food Chemistry, 2010, 118, 266-271.	4.2	52
143	The biosynthesis and conjugation of indole-3-acetic acid in germinating seed and seedlings ofDalbergia dolichopetala. Planta, 1988, 174, 561-568.	1.6	51
144	Black tea reduces uric acid and C-reactive protein levels in humans susceptible to cardiovascular diseases. Toxicology, 2010, 278, 68-74.	2.0	51

#	Article	IF	CITATIONS
145	Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. American Journal of Clinical Nutrition, 2017, 106, 791-800.	2.2	51
146	Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants. Progress in the Chemistry of Organic Natural Products, 2017, 105, 1-88.	0.8	50
147	Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Species ofCoffea. Journal of Agricultural and Food Chemistry, 1999, 47, 3425-3431.	2.4	49
148	Absorption and Metabolism of Dietary Plant Secondary Metabolites. , 0, , 303-351.		49
149	Urolithins at physiological concentrations affect the levels of pro-inflammatory cytokines and growth factor in cultured cardiac cells in hyperglucidic conditions. Journal of Functional Foods, 2015, 15, 97-105.	1.6	49
150	Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. European Journal of Nutrition, 2018, 57, 231-242.	1.8	49
151	Electron spin resonance (ESR) spectroscopic assessment of the contribution of quercetin and other flavonols to the antioxidant capacity of red wines. Journal of the Science of Food and Agriculture, 1999, 79, 1011-1014.	1.7	48
152	HPLC–PDA–MS fingerprinting to assess the authenticity of pomegranate beverages. Food Chemistry, 2012, 135, 1863-1867.	4.2	48
153	Metabolism of Indole-3-Acetic Acid by Pericarp Discs from Immature and Mature Tomato (Lycopersicon) Tj ETQq1	1_0,78431 2.3	.4rgBT /C∨d
154	Tea prepared from Anastatica hirerochuntica seeds contains a diversity of antioxidant flavonoids, chlorogenic acids and phenolic compounds. Phytochemistry, 2011, 72, 248-254.	1.4	47
155	Analysis of 3-indole carboxylic acid in Pinus sylvestris needles. Phytochemistry, 1984, 23, 99-102.	1.4	46
156	Separation of the N-7 methyltransferase, the key enzyme in caffeine biosynthesis. Phytochemistry, 1997, 45, 1407-1414.	1.4	46
157	The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth. Planta, 2000, 211, 715-721.	1.6	46
158	Assessing the respective contributions of dietary flavanol monomers and procyanidins in mediating cardiovascular effects in humans: randomized, controlled, double-masked intervention trial. American Journal of Clinical Nutrition, 2018, 108, 1229-1237.	2.2	46
159	Identification of Metabolites in Human Plasma and Urine after Consumption of a Polyphenol-Rich Juice Drink. Journal of Agricultural and Food Chemistry, 2010, 58, 2586-2595.	2.4	45
160	Raspberry juice consumption, oxidative stress and reduction of atherosclerosis risk factors in hypercholesterolemic golden Syrian hamsters. Food and Function, 2011, 2, 400.	2.1	45
161	Anti-estrogenic activity of a human resveratrol metabolite. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 1086-1092.	1.1	45
162	Terms and nomenclature used for plant-derived components in nutrition and related research: efforts toward harmonization. Nutrition Reviews, 2020, 78, 451-458.	2.6	44

#	Article	IF	CITATIONS
163	Consumption of Mixed Fruit-juice Drink and Vitamin C Reduces Postprandial Stress Induced by a High Fat Meal in Healthy Overweight Subjects. Current Pharmaceutical Design, 2014, 20, 1020-1024.	0.9	44
164	Caffeine metabolism in Coffea arabica and other species of coffee. Phytochemistry, 1991, 30, 3913-3916.	1.4	43
165	Distribution, Biosynthesis and Catabolism of Methylxanthines in Plants. Handbook of Experimental Pharmacology, 2011, , 11-31.	0.9	42
166	Profiles of Phenolic Compounds and Purine Alkaloids during the Development of Seeds of <i>Theobroma cacao</i> cv. Trinitario. Journal of Agricultural and Food Chemistry, 2013, 61, 427-434.	2.4	42
167	Unfermented and fermented rooibos teas (Aspalathus linearis) increase plasma total antioxidant capacity in healthy humans. Food Chemistry, 2010, 123, 679-683.	4.2	40
168	Absorption, Disposition, Metabolism, and Excretion of [3- ¹⁴ C]Caffeic Acid in Rats. Journal of Agricultural and Food Chemistry, 2012, 60, 5205-5214.	2.4	40
169	Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2a human macrophages exhibiting anti-inflammatory effects. Food and Function, 2012, 3, 1144.	2.1	40
170	A comprehensive evaluation of the [2- 14 C](–)-epicatechin metabolome in rats. Free Radical Biology and Medicine, 2016, 99, 128-138.	1.3	40
171	Tracking (Poly)phenol Components from Raspberries in Ileal Fluid. Journal of Agricultural and Food Chemistry, 2014, 62, 7631-7641.	2.4	39
172	Flavonoid and Hydroxycinnamate Profiles of English Apple Ciders. Journal of Agricultural and Food Chemistry, 2007, 55, 8723-8730.	2.4	38
173	Characterization of the storage protein in seed of Coix lacryma-jobi var. Adlay. Journal of Agricultural and Food Chemistry, 1990, 38, 631-635.	2.4	37
174	Do flavan-3-ols from green tea reach the human brain?. Nutritional Neuroscience, 2006, 9, 57-61.	1.5	37
175	Studies on the Metabolic Control of Caffeine Turnover in Developing Endosperms and Leaves of Coffea arabica and Coffea dewevrei. Journal of Agricultural and Food Chemistry, 1994, 42, 1423-1427.	2.4	34
176	Theophylline metabolism in higher plants. Biochimica Et Biophysica Acta - General Subjects, 1997, 1336, 323-330.	1.1	34
177	Effect of dietary advice to increase fruit and vegetable consumption on plasma flavonol concentrations: results from a randomised controlled intervention trial. Journal of Epidemiology and Community Health, 2004, 58, 288-289.	2.0	34
178	<i>In vitro</i> studies on the stability in the proximal gastrointestinal tract and bioaccessibility in Caco-2 cells of chlorogenic acids from spent coffee grounds. International Journal of Food Sciences and Nutrition, 2015, 66, 657-664.	1.3	34
179	Conversion of [14C]gibberellin A12-aldehyde to C19- and C20-gibberellins in a cell-free system from immature seed of Phaseolus coccineus L Planta, 1985, 165, 108-113.	1.6	33
180	The Effects of Dietary Phenolic Compounds on Cytokine and Antioxidant Production by A549 Cells. Journal of Medicinal Food, 2008, 11, 382-384.	0.8	33

ALAN CROZIER

#	Article	IF	CITATIONS
181	Use of LC-MS for the quantitative analysis of (poly)phenol metabolites does not necessarily yield accurate results: Implications for assessing existing data and conducting future research. Free Radical Biology and Medicine, 2018, 124, 97-103.	1.3	33
182	Steroidal plant growth regulators, castasterone and typhasterol (2-deoxycastasterone) from the shoots of sitka spruce (Picea sitchensis). Phytochemistry, 1985, 24, 1333-1335.	1.4	32
183	ProDiet: A Phase II Randomized Placebo-controlled Trial of Green Tea Catechins and Lycopene in Men at Increased Risk of Prostate Cancer. Cancer Prevention Research, 2018, 11, 687-696.	0.7	32
184	Efficiency of Countercurrent Distribution, Sephadex G–10, and Silicic Acid Partition Chromatography in the Purification and Separation of Gibberellin-like Substances from Plant Tissue. Journal of Experimental Botany, 1969, 20, 786-795.	2.4	30
185	Reversed- and normal-phase high-performance liquid chromatography of gibberellin methoxycoumaryl esters. Journal of Chromatography A, 1982, 238, 157-166.	1.8	30
186	Analysis of [14C] indole-3-acetic acid metabolites from the primary roots of Zea mays seedlings using reverse-phase high-performance liquid chromatography. Physiologia Plantarum, 1983, 57, 129-134.	2.6	30
187	Drinking your health? It's too early to say. Nature, 2003, 426, 119-119.	13.7	30
188	Detection and identification of 14C-labelled flavonol metabolites by high-performance liquid chromatography–radiocounting and tandem mass spectrometry. Journal of Chromatography A, 2003, 1007, 21-29.	1.8	30
189	Quercetin metabolites and protection against peroxynitrite-induced oxidative hepatic injury in rats. Free Radical Research, 2009, 43, 913-921.	1.5	30
190	Identification of Endogenous Gibberellins from Salix pentandra. Plant Physiology, 1985, 78, 473-476.	2.3	29
191	HPLC-based methods for the identification of gibberellin conjugates: Metabolism of [3H]gibberellin A4 in seedlings of Phaseolus coccineus. Phytochemistry, 1986, 25, 1823-1828.	1.4	29
192	Analysis of Indole-3-Acetic Acid Metabolites from Dalbergia dolichopetala by High Performance Liquid Chromatography-Mass Spectrometry. Plant Physiology, 1992, 100, 63-68.	2.3	28
193	Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation. Gut, 2007, 56, 1678-1684.	6.1	28
194	Flavonoid metabolites in human plasma and urine after the consumption of red onions: analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric detection. Journal of Chromatography A, 2004, 1058, 163-8.	1.8	28
195	Purification of indole-3-acetic acid in plant extracts by immunoaffinity chromatography. Phytochemistry, 1986, 25, 295-298.	1.4	27
196	Subcellular localization of the N-3 methyltransferase involved in caffeine biosynthes in tea. Phytochemistry, 1998, 48, 777-779.	1.4	27
197	Isotopic Labelling of Quercetin 4′-O-β-d-Glucoside. Tetrahedron, 2000, 56, 4101-4106.	1.0	27
198	Glucuronidation does not suppress the estrogenic activity of quercetin in yeast and human breast cancer cell model systems. Archives of Biochemistry and Biophysics, 2014, 559, 62-67.	1.4	27

ALAN CROZIER

#	Article	IF	CITATIONS
199	Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract. Food Chemistry, 2018, 252, 49-60.	4.2	27
200	Bioavailability of red wine and grape seed proanthocyanidins in rats. Food and Function, 2020, 11, 3986-4001.	2.1	27
201	Dietary flavonols contribute to false-positive elevation of homovanillic acid, a marker of catecholamine-secreting tumors. Clinica Chimica Acta, 2011, 412, 165-169.	0.5	26
202	Biosynthesis and Catabolism of Purine Alkaloids. Advances in Botanical Research, 2013, , 111-138.	0.5	26
203	In Vitro and in Vivo Models of Colorectal Cancer: Antigenotoxic Activity of Berries. Journal of Agricultural and Food Chemistry, 2014, 62, 3852-3866.	2.4	26
204	Isotopic labelling of quercetin 3-glucoside. Tetrahedron, 2006, 62, 7257-7265.	1.0	25
205	Assessment of the polyphenolic composition of the organic extracts of Mauritian black teas: A potential contributor to their antioxidant functions. BioFactors, 2006, 27, 79-91.	2.6	25
206	Effect of ellagitannins, ellagic acid and volatile compounds from oak wood on the (+)-catechin, procyanidin B1 and malvidin-3-glucoside content of model wines. Australian Journal of Grape and Wine Research, 2008, 14, 260-270.	1.0	25
207	Perturbation of the EphA2–EphrinA1 System in Human Prostate Cancer Cells by Colonic (Poly)phenol Catabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 8877-8884.	2.4	25
208	Effect of phosphate deficiency on the content and biosynthesis of anthocyanins and the expression of related genes in suspension-cultured grape (Vitis sp.) cells. Plant Physiology and Biochemistry, 2012, 55, 77-84.	2.8	25
209	Absorption, metabolism, and excretion of fermented orange juice (poly)phenols in rats. BioFactors, 2014, 40, 327-335.	2.6	25
210	The effect of light on the gibberellin metabolism and growth of Phaseolus coccineus seedlings. Planta, 1975, 126, 83-91.	1.6	24
211	Biosynthesis of indole-3-acetic acid in protoplasts, chloroplasts and a cytoplasmic fraction from barley (Hordeum vulgare L.). Planta, 1982, 156, 541-545.	1.6	24
212	Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Canadian Journal of Botany, 1999, 77, 1311-1315.	1.2	24
213	Analysis of gibberellins and gibberellin conjugates by ion-suppression reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1986, 367, 377-384.	1.8	23
214	Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin. FEBS Letters, 2003, 554, 473-477.	1.3	23
215	A critical evaluation of the use of gas chromatography- and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice. Journal of Chromatography A, 2018, 1575, 100-112.	1.8	23
216	Characterization of gibberellins from light-grown Phaseolus coccineus seedlings by combined GC-MS. Phytochemistry, 1973, 12, 2935-2941.	1.4	22

#	Article	IF	CITATIONS
217	Effects of AMO-1618 on Growth, Morphology, and Gibberellin Content ofPhaseolus CocineusSeedlings. Journal of Experimental Botany, 1973, 24, 923-931.	2.4	22
218	Milk and absorption of dietary flavanols. Nature, 2003, 426, 788-788.	13.7	22
219	Grape Pomace: Antioxidant Activity, Potential Effect Against Hypertension and Metabolites Characterization after Intake. Diseases (Basel, Switzerland), 2018, 6, 60.	1.0	22
220	Characterization of gibberellins from dark-grown Phaseolus coccineus seedlings by gas-liquid chromatography and combined gas chromatography-mass spectrometry. Planta, 1971, 97, 142-154.	1.6	21
221	The Development of a High Performance Liquid Chromatograph with a Sensitive On-stream Radioactivity Monitor for the Analysis of3H- and14C-labelled Gibberellins. Journal of Experimental Botany, 1976, 27, 1243-1258.	2.4	21
222	Caffeine Metabolism in High and Low Caffeine Containing Cultivars of Camellia sinensis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1995, 50, 602-607.	0.6	21
223	Increasing antioxidant intake from fruits and vegetables: practical strategies for the Scottish population. Journal of Human Nutrition and Dietetics, 2008, 21, 539-546.	1.3	21
224	The ellagitannin metabolite urolithin C is a glucoseâ€dependent regulator of insulin secretion through activation of Lâ€type calcium channels. British Journal of Pharmacology, 2019, 176, 4065-4078.	2.7	21
225	Plasma pharmacokinetics of (poly)phenol metabolites and catabolites after ingestion of orange juice by endurance trained men. Free Radical Biology and Medicine, 2020, 160, 784-795.	1.3	21
226	Characterization and antioxidant activity of avenanthramides from selected oat lines developed by mutagenesis technique. Food Chemistry, 2021, 343, 128408.	4.2	21
227	Metabolism of ³ H-Gibberellin A ₁ and ³ H-Gibberellin A ₄ by <i>Phaseolus coccineus</i> Seedlings. Plant Physiology, 1975, 55, 42-44.	2.3	20
228	Purification of plant hormone extracts by gel permeation chromatographyâ~†. Phytochemistry, 1976, 15, 791-793.	1.4	20
229	Profiles of Purine and Pyrimidine Nucleotides in Fresh and Manufactured Tea Leaves. Journal of Agricultural and Food Chemistry, 2001, 49, 4378-4382.	2.4	19
230	Polyphenols composition of wine and grape sub-products and potential effects on chronic diseases. Nutrition and Aging (Amsterdam, Netherlands), 2014, 2, 165-177.	0.3	19
231	Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes. British Journal of Nutrition, 2016, 115, 1699-1710.	1.2	19
232	Novel colonâ€available triterpenoids identified in raspberry fruits exhibit antigenotoxic activities in vitro. Molecular Nutrition and Food Research, 2017, 61, 1600327.	1.5	19
233	Effect of nitrogen nutrition on amino acid composition of xylem sap and stem wood in Alnus glutinosa. Physiologia Plantarum, 1990, 79, 506-511.	2.6	18
234	Translocation and metabolism of [3H]gibberellins by light-grown Phaseolus coccineus seedlings. Planta, 1975, 127, 221-231.	1.6	17

#	Article	IF	CITATIONS
235	Indole-3-acetic acid and indole-3-ethanol in light-grown Pisum sativum seedlings and their localization in chloroplast fractions. Phytochemistry, 1986, 25, 299-302.	1.4	17
236	SOFT FRUIT AS SOURCES OF DIETARY ANTIOXIDANTS. Acta Horticulturae, 2002, , 459-465.	0.1	17
237	Dietary phenolic acids and ascorbic acid: Influence on acid-catalyzed nitrosative chemistry in the presence and absence of lipids. Free Radical Biology and Medicine, 2010, 48, 763-771.	1.3	17
238	Reduction of monocyte chemoattractant protein 1 and macrophage migration inhibitory factor by a polyphenol-rich extract in subjects with clustered cardiometabolic risk factors. British Journal of Nutrition, 2011, 106, 1416-1422.	1.2	17
239	Bioavailability and metabolism of hydroxycinnamates in rats fed with durum wheat aleurone fractions. Food and Function, 2014, 5, 1738-1746.	2.1	17
240	Distribution of gibberellin-like substances in light-and dark-grown seedlings of Phaseolus multiflorus. Planta, 1968, 83, 207-217.	1.6	16
241	Metabolism of [14C]Indole-3-Acetic Acid by Coleoptiles ofZea maysL Journal of Experimental Botany, 1985, 36, 99-109.	2.4	16
242	Metabolism of [1,2-3H]gibberellin A4 by epicotyls and cell-free preparations from Phaseolus coccineus L. seedlings. Planta, 1989, 178, 267-274.	1.6	16
243	Absorption, metabolism, and excretion of (–)-epicatechin in humans: an evaluation of recent findings. American Journal of Clinical Nutrition, 2013, 98, 861-862.	2.2	16
244	Ex vivo fecal fermentation of human ileal fluid collected after raspberry consumption modifies (poly)phenolics and modulates genoprotective effects in colonic epithelial cells. Redox Biology, 2021, 40, 101862.	3.9	16
245	High-performance steric exclusion chromatography of plant hormones. Journal of Chromatography A, 1980, 198, 57-63.	1.8	15
246	Comparison of the phenolic composition of fruit juices by single step gradient HPLC analysis of multiple components versus multiple chromatographic runs optimised for individual families. Free Radical Research, 2000, 32, 549-559.	1.5	15
247	Alkaloids. , 0, , 102-136.		15
248	Coffee, caffeine and health: What's in your cup?. Maturitas, 2012, 72, 171-172.	1.0	15
249	Reliable, accessible and transferable method for the quantification of flavanols and procyanidins in foodstuffs and dietary supplements. Food and Function, 2020, 11, 131-138.	2.1	15
250	Metabolism of [14C]indole-3-acetic acid by the cortical and stelar tissues of Zea mays L. roots. Planta, 1985, 164, 105-108.	1.6	14
251	Effects of sodium diethyldithiocarbamate, solvent, temperature and plant extracts on the stability of indoles. Physiologia Plantarum, 1986, 68, 519-522.	2.6	14

252 Terpenes. , 0, , 47-101.

15

#	Article	IF	CITATIONS
253	ABSCISIC ACID IN THE NODULATED ROOT SYSTEM OF ALNUS GLUTINOSA. New Phytologist, 1983, 95, 203-208.	3.5	13
254	In Vitro Faecal Fermentation of Monomeric and Oligomeric Flavanâ€3â€ols: Catabolic Pathways and Stoichiometry. Molecular Nutrition and Food Research, 2022, 66, e2101090.	1.5	13
255	Absorption, distribution, metabolism and excretion of apigenin and its glycosides in healthy male adults. Free Radical Biology and Medicine, 2022, 185, 90-96.	1.3	13
256	Endogenous gibberellins of Douglas fir. Phytochemistry, 1970, 9, 2453-2459.	1.4	12
257	Identification of abscisic acid from shoots of Salix pentandra. Physiologia Plantarum, 1986, 66, 406-408.	2.6	12
258	Effect of changes in fruit and vegetable intake on plasma antioxidant defenses in humans. American Journal of Clinical Nutrition, 2005, 81, 531-532.	2.2	12
259	Aspects of the Metabolism and Physiology of Gibberellins. Advances in Botanical Research, 1981, , 33-149.	0.5	11
260	Biosynthesis of gibberellin A12-aldehyde, gibberellin A12 and their kaurenoid precursors from [14C]mevalonic acid in a cell-free system from immature seed of Phaseolus coccineus. Phytochemistry, 1985, 25, 97-101.	1.4	11
261	Catabolism of indole-3-acetic acid in chloroplast fractions from light-grown Pisum sativum L. seedlings Plant, Cell and Environment, 1986, 9, 527-534.	2.8	11
262	Detection of abscisic acid, indole-3-acetic acid and indole-3-ethanol in seeds of Dalbergia dolichopetala. Phytochemistry, 1987, 26, 327-328.	1.4	11
263	Purine Alkaloid Biosynthesis in Young Leaves of Camellia sinensis in Light and Darkness. Journal of Plant Research, 2000, 113, 217-221.	1.2	11
264	Quality changes in chilled Norway lobster (<i>Nephrops norvegicus</i>) tail meat and the effects of delayed icing. International Journal of Food Science and Technology, 2011, 46, 1413-1421.	1.3	11
265	Effect of changes in nitrogen nutrition on the polyamine content of Alnus glutinosa. Plant, Cell and Environment, 1991, 14, 415-421.	2.8	10
266	Decarboxylative metabolism of [1′-14C]indole-3-acetic acid by tomato pericarp discs during ripening. Planta, 1994, 193, 508-513.	1.6	10
267	Classification and Biosynthesis of Secondary Plant Products: An Overview. , 0, , 27-48.		10
268	Sulphur-Containing Compounds. , 0, , 25-46.		10
269	The composition of potentially bioactive triterpenoid glycosides in red raspberry is influenced by tissue, extraction procedure and genotype. Food and Function, 2017, 8, 3469-3479.	2.1	10
270	Catabolism of indole-3-acetic acid in chloroplast fractions from light-grown Pisum sativum L. seedlings. Plant, Cell and Environment, 1986, 9, 527-534.	2.8	10

#	Article	IF	CITATIONS
271	The synthesis of (3H)-gibberellin A9 with high specific activity Agricultural and Biological Chemistry, 1976, 40, 2091-2094.	0.3	9
272	Metabolism of C19- and C20-gibberellins by cell-free preparations from immature Phaseolus coccineus seed. Physiologia Plantarum, 1991, 82, 57-66.	2.6	9
273	Overview of health-promoting compounds in fruit and vegetables. , 2008, , 3-37.		9
274	The glass that cheers: Phenolic and polyphenolic constituents and the beneficial effects of moderate red wine consumption. Biochemist, 2010, 32, 4-9.	0.2	9
275	Activity of gibberellin A ₂₄ in 10 plant bioassays. Canadian Journal of Botany, 1969, 47, 815-820.	1.2	8
276	Effects of light on the catabolism of [2-14C]-3-indole acetic acid in protoplasts, a chloroplast-rich fraction, and a crude cytoplasmic preparation from barley (Hordeum vulgare L). Plant, Cell and Environment, 1983, 6, 111-115.	2.8	8
277	Physico-chemical methods of plant hormone analysis. New Comprehensive Biochemistry, 1999, 33, 23-60.	0.1	8
278	Caffeine biosynthesis in young leaves of Camellia sinensis: In vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiologia Plantarum, 1996, 98, 629-636.	2.6	8
279	Biological and chromatographic properties of two gibberellin-like compounds from etiolated Phaseolus multiflorus seedlings. Phytochemistry, 1968, 7, 1923-1931.	1.4	7
280	Gibberellin-like Substances From Vegetative Tissue of a Conifer, Arizona Cypress. Plant Physiology, 1968, 43, 2049-2053.	2.3	7
281	Dietary phenolics, absorption, mammalian and microbial metabolism and colonic health. Molecular Nutrition and Food Research, 2009, 53, S5-6.	1.5	7
282	Purine Alkaloids, Cytokinins, and Purine-Like Neurotoxin Alkaloids. , 2013, , 953-975.		7
283	Fruit and Vegetables. , 0, , 107-133.		7
284	Beverages. , 0, , 147-182.		7
285	The cup that cheers: Caffeine biosynthesis: biochemistry and molecular biology. Biochemist, 2006, 28, 23-26.	0.2	7
286	A REPLY TO 'INFORMATION THEORY AND PLANT GROWTH SUBSTANCE ANALYSIS' BY I. M. SCOTT. Plant, Cell and Environment, 1983, 6, 365-367.	2.8	6
287	Nontargeted LC-MS ^{<i>n</i>} Profiling of Compounds in Ileal Fluids That Decrease after Raspberry Intake Identifies Consistent Alterations in Bile Acid Composition. Journal of Natural Products, 2016, 79, 2606-2615.	1.5	6
288	Validation of a high-throughput method for the quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma by UPLC-MS. Food and Function, 2021, 12, 7762-7772.	2.1	6

#	Article	IF	CITATIONS
289	The Synthesis of (3H)-Gibberellin A9with High Specific Activity. Agricultural and Biological Chemistry, 1976, 40, 2091-2094.	0.3	5
290	Endogenous Hormones, Germination and Early Seedling Growth of Dalbergia dolicbopetala. Journal of Plant Physiology, 1988, 132, 762-765.	1.6	5
291	Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. , 1993, 3, 681.		5
292	In vitro catabolism of 3′,4′-dihydroxycinnamic acid by human colonic microbiota. International Journal of Food Sciences and Nutrition, 2021, 72, 511-517.	1.3	4
293	Development and validation of HPLC-MS2 methodology for the accurate determination of C4–C8 B-type flavanols and procyanidins. Scientific Reports, 2021, 11, 14761.	1.6	3
294	Chemical composition of coffee beans: an overview. Burleigh Dodds Series in Agricultural Science, 2018, , 195-214.	0.1	3
295	Metabolism of C19- and C20-gibberellins by cell-free preparations from immature Phaseolus coccineus seed. Physiologia Plantarum, 1991, 82, 57-66.	2.6	3
296	Chemometrics papers. Analytical Proceedings, 1992, 29, 422.	0.4	2
297	(Poly)phenolic Constituents and the Beneficial Effects of Moderate Red Wine Consumption. Journal of Wine Research, 2011, 22, 131-134.	0.9	2
298	Acute effect of oat β-glucan on the bioavailability of orange juice flavanones. International Journal of Food Sciences and Nutrition, 2021, , 1-7.	1.3	2
299	EFFECT OF FRUIT JUICE INTAKE ON URINARY QUERCETIN EXCRETION AND BIOMARKERS OF ANTIOXIDATIVE STATUS. , 1999, , 193-196.		1
300	Pathways Involved in the Metabolism of Caffeine by Coffea and Camellia Plants. ACS Symposium Series, 2000, , 9-19.	0.5	1
301	Functions of the Human Intestinal Flora: The Use of Probiotics and Prebiotics. , 0, , 174-207.		1
302	How Safe Is Upper GI Endoscopy?. Gastrointestinal Endoscopy, 2005, 61, AB120.	0.5	0
303	The protective effects of moderate red wine consumption. Toxicology Letters, 2006, 164, S8.	0.4	0
304	Polyphenols and phenolic acids modulate inflammatory cytokine release by Jurkat human CD4+ Tâ€cells. FASEB Journal, 2013, 27, 348.5.	0.2	0
305	Chapter 6. Pharmacokinetics. Food Chemistry, Function and Analysis, 2019, , 159-185.	0.1	0