
Peter D Balsam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235961/publications.pdf Version: 2024-02-01

DETED D RAISAM

#	Article	IF	CITATIONS
1	How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Molecular Psychiatry, 2022, 27, 436-444.	7.9	21
2	Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Molecular Psychiatry, 2022, 27, 1502-1514.	7.9	18
3	Developmental impact of glutamate transporter overexpression on dopaminergic neuron activity and stereotypic behavior. Molecular Psychiatry, 2022, 27, 1515-1526.	7.9	6
4	Peak Procedure. , 2022, , 5102-5107.		0
5	Dopamine encodes real-time reward availability and transitions between reward availability states on different timescales. Nature Communications, 2022, 13, .	12.8	9
6	Dopamine D2R upregulation in ventral striatopallidal neurons does not affect Pavlovian or go/no-go learning Behavioral Neuroscience, 2021, 135, 369-379.	1.2	1
7	A role for reward valuation in the serotonergic modulation of impulsivity. Psychopharmacology, 2021, 238, 3293-3309.	3.1	6
8	Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. European Journal of Neuroscience, 2020, 51, 71-81.	2.6	16
9	Emerging roles of striatal dopamine D2 receptors in motivated behaviour: Implications for psychiatric disorders. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 47-55.	2.5	15
10	5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy. Molecular Psychiatry, 2020, 25, 3304-3321.	7.9	31
11	Dissociating the effects of dopamine D2 receptors on effort-based versus value-based decision making using a novel behavioral approach Behavioral Neuroscience, 2020, 134, 101-118.	1.2	18
12	Peak Procedure. , 2020, , 1-6.		0
13	Evidence for a Mixed Timing and Counting Strategy in Mice Performing a Mechner Counting Task. Frontiers in Behavioral Neuroscience, 2019, 13, 109.	2.0	9
14	Time-scale-invariant information-theoretic contingencies in discrimination learning Journal of Experimental Psychology Animal Learning and Cognition, 2019, 45, 280-289.	0.5	9
15	A Perceptual Inference Mechanism for Hallucinations Linked to Striatal Dopamine. Current Biology, 2018, 28, 503-514.e4.	3.9	120
16	An Interaction between Serotonin Receptor Signaling and Dopamine Enhances Goal-Directed Vigor and Persistence in Mice. Journal of Neuroscience, 2018, 38, 2149-2162.	3.6	32
17	Striatal dopamine D2 receptors regulate effort but not value-based decision making and alter the dopaminergic encoding of cost. Neuropsychopharmacology, 2018, 43, 2180-2189.	5.4	30
18	Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior. Neuropsychopharmacology, 2017, 42, 1182-1191.	5.4	29

#	Article	IF	CITATIONS
19	A corticostriatal deficit promotes temporal distortion of automatic action in ageing. ELife, 2017, 6, .	6.0	12
20	Rescaling of temporal expectations during extinction Journal of Experimental Psychology Animal Learning and Cognition, 2017, 43, 1-14.	0.5	7
21	Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. ENeuro, 2017, 4, ENEURO.0227-17.2017.	1.9	37
22	Neonatal eyelid conditioning during sleep. Developmental Psychobiology, 2016, 58, 875-882.	1.6	14
23	Associative learning and timing. Current Opinion in Behavioral Sciences, 2016, 8, 181-185.	3.9	26
24	Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiology of Learning and Memory, 2016, 133, 233-256.	1.9	95
25	Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action. Journal of Neuroscience, 2016, 36, 5988-6001.	3.6	98
26	Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning. Journal of Neurophysiology, 2016, 115, 240-254.	1.8	13
27	The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacology, 2016, 233, 615-624.	3.1	33
28	Improving temporal cognition by enhancing motivation Behavioral Neuroscience, 2015, 129, 576-588.	1.2	19
29	Orbitofrontal cortex mediates the differential impact of signaled-reward probability on discrimination accuracy. Frontiers in Neuroscience, 2015, 9, 230.	2.8	17
30	A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task Behavioral Neuroscience, 2015, 129, 269-280.	1.2	40
31	The impact of motivation on cognitive performance in an animal model of the negative and cognitive symptoms of schizophrenia Behavioral Neuroscience, 2015, 129, 292-299.	1.2	19
32	The Behavioral Neuroscience of Motivation: An Overview of Concepts, Measures, and Translational Applications. Current Topics in Behavioral Neurosciences, 2015, 27, 1-12.	1.7	48
33	Mediodorsal Thalamus Hypofunction Impairs Flexible Goal-Directed Behavior. Biological Psychiatry, 2015, 77, 445-453.	1.3	124
34	Subjective and Real Time: Coding Under Different Drug States. International Journal of Comparative Psychology, 2015, 28, .	0.3	1
35	Effects of Emotional Valence and Arousal on Time Perception. Timing and Time Perception, 2014, 2, 360-378.	0.6	25
36	Temporal maps in appetitive Pavlovian conditioning. Behavioural Processes, 2014, 101, 15-22.	1.1	11

#	Article	IF	CITATIONS
37	Unexpected downshifts in reward magnitude induce variation in human behavior. Psychonomic Bulletin and Review, 2014, 21, 436-444.	2.8	8
38	Time to rethink the neural mechanisms of learning and memory. Neurobiology of Learning and Memory, 2014, 108, 136-144.	1.9	91
39	It's the information!. Behavioural Processes, 2013, 95, 3-7.	1.1	38
40	Measuring reinforcement learning and motivation constructs in experimental animals: Relevance to the negative symptoms of schizophrenia. Neuroscience and Biobehavioral Reviews, 2013, 37, 2149-2165.	6.1	82
41	Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron, 2013, 77, 1151-1162.	8.1	318
42	Information: Theory, brain, and behavior. Journal of the Experimental Analysis of Behavior, 2013, 100, 408-431.	1.1	18
43	Conditioned stimulus informativeness governs conditioned stimulusâ^'unconditioned stimulus associability Journal of Experimental Psychology, 2012, 38, 217-232.	1.7	40
44	Schizophrenia in Translation: Dissecting Motivation in Schizophrenia and Rodents. Schizophrenia Bulletin, 2012, 38, 1111-1117.	4.3	57
45	Medial prefrontal lesions in mice impair sustained attention but spare maintenance of information in working memory. Learning and Memory, 2012, 19, 513-517.	1.3	35
46	Timing as a window on cognition in schizophrenia. Neuropharmacology, 2012, 62, 1175-1181.	4.1	73
47	Dissociation of Hedonic Reaction to Reward and Incentive Motivation in an Animal Model of the Negative Symptoms of Schizophrenia. Neuropsychopharmacology, 2012, 37, 1699-1707.	5.4	124
48	Pharmacologic Rescue of Motivational Deficit in an Animal Model of the Negative Symptoms of Schizophrenia. Biological Psychiatry, 2011, 69, 928-935.	1.3	80
49	Food anticipation depends on oscillators and memories in both body and brain. Physiology and Behavior, 2011, 104, 562-571.	2.1	37
50	Modeling motivational deficits in mouse models of schizophrenia: Behavior analysis as a guide for neuroscience. Behavioural Processes, 2011, 87, 149-156.	1.1	35
51	Effects of cortical and striatal dopamine D1 receptor blockade on cued versus noncued behavioral responses Behavioral Neuroscience, 2011, 125, 705-713.	1.2	5
52	Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep and Biological Rhythms, 2010, 8, 120-136.	1.0	19
53	Time and Associative Learning Comparative Cognition and Behavior Reviews, 2010, 5, 1-22.	2.0	127
54	Newborn infants learn during sleep. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10320-10323.	7.1	95

#	Article	IF	CITATIONS
55	Relative temporal representations in Pavlovian conditioning. Behavioural Processes, 2010, 83, 154-161.	1.1	5
56	Glutaminase-Deficient Mice Display Hippocampal Hypoactivity, Insensitivity to Pro-Psychotic Drugs and Potentiated Latent Inhibition: Relevance to Schizophrenia. Neuropsychopharmacology, 2009, 34, 2305-2322.	5.4	76
57	Timing and anticipation: conceptual and methodological approaches. European Journal of Neuroscience, 2009, 30, 1749-1755.	2.6	49
58	Temporal maps and informativeness in associative learning. Trends in Neurosciences, 2009, 32, 73-78.	8.6	216
59	Dopamine D1 and D2 antagonist effects on response likelihood and duration Behavioral Neuroscience, 2009, 123, 1279-1287.	1.2	17
60	Impaired timing precision produced by striatal D2 receptor overexpression is mediated by cognitive and motivational deficits Behavioral Neuroscience, 2009, 123, 720-730.	1.2	71
61	Transient Overexpression of Striatal D ₂ Receptors Impairs Operant Motivation and Interval Timing. Journal of Neuroscience, 2007, 27, 7731-7739.	3.6	199
62	Amphetamine affects the start of responding in the peak interval timing task. Behavioural Processes, 2007, 74, 168-175.	1.1	56
63	A "Good Parent" Function of Dopamine: Transient Modulation of Learning and Performance during Early Stages of Training. Annals of the New York Academy of Sciences, 2007, 1104, 270-288.	3.8	22
64	Pavlovian contingencies and temporal information Journal of Experimental Psychology, 2006, 32, 284-294.	1.7	36
65	Dopamine receptor blockade and extinction differentially affect behavioral variability Behavioral Neuroscience, 2006, 120, 488-492.	1.2	21
66	Mice with Chronically Elevated Dopamine Exhibit Enhanced Motivation, but not Learning, for a Food Reward. Neuropsychopharmacology, 2006, 31, 1362-1370.	5.4	221
67	Temporal Control of Conditioned Responding in Goldfish Journal of Experimental Psychology, 2005, 31, 31-39.	1.7	104
68	Extended Habit Training Reduces Dopamine Mediation of Appetitive Response Expression. Journal of Neuroscience, 2005, 25, 6729-6733.	3.6	90
69	Learning theory, feed-forward mechanisms, and the adaptiveness of conditioned responding. Behavioral and Brain Sciences, 2004, 27, 698-698.	0.7	0
70	The learning curve: Implications of a quantitative analysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13124-13131.	7.1	492
71	Temporal Specificity of Extinction in Autoshaping Journal of Experimental Psychology, 2004, 30, 163-176.	1.7	43
72	Effects of dopamine antagonists on the timing of two intervals. Pharmacology Biochemistry and Behavior, 2003, 75, 9-15.	2.9	109

#	Article	IF	CITATIONS
73	Effects of Early Strategic Hints on Sustained Variability Levels. Creativity Research Journal, 2003, 15, 331-341.	2.6	9
74	Timing at the Start of Associative Learning. Learning and Motivation, 2002, 33, 141-155.	1.2	77
75	An optimal period for setting sustained variability levels. Psychonomic Bulletin and Review, 2001, 8, 177-184.	2.8	18
76	Effects of different acquisition procedures on response variability. Learning and Behavior, 1999, 27, 28-41.	3.4	19
77	Social and nutritional influences on the feeding of ring dove squab. Developmental Psychobiology, 1994, 27, 195-204.	1.6	12
78	Form of early pecking in the ring dove squab (Streptoplia risoria): An examination of the preformation hypothesis Journal of Comparative Psychology (Washington, D C: 1983), 1993, 107, 261-275.	0.5	6
79	The Roles of Experience in the Transition from Dependent to Independent Feeding in Ring Doves. Annals of the New York Academy of Sciences, 1992, 662, 16-36.	3.8	6
80	EFFECTS OF REINFORCING PRESELECTED APPROXIMATIONS ON THE TOPOGRAPHY OF THE RAT'S BAR PRESS. Journal of the Experimental Analysis of Behavior, 1991, 55, 213-231.	1.1	56
81	The effects of varying the interreinforcement interval on appetitive contextual conditioning. Learning and Behavior, 1991, 19, 125-138.	3.4	24
82	Associative factors and the development of pecking in the ring dove. Developmental Psychobiology, 1985, 18, 447-460.	1.6	17
83	Reward induced response covariation: Side effects revisited. Journal of Applied Behavior Analysis, 1985, 18, 79-80.	2.7	9
84	Microcomputers and conditioning research. Behavior Research Methods, 1985, 17, 537-545.	1.3	6
85	Relative Time in Trace Conditioning. Annals of the New York Academy of Sciences, 1984, 423, 211-227.	3.8	38
86	Microcomputers in psychology laboratory courses. Behavior Research Methods, 1984, 16, 150-152.	1.3	5
87	The negative side effects of reward Journal of Applied Behavior Analysis, 1983, 16, 283-296.	2.7	80
88	A Search for Preexposure Effects in Autoshaping: Effects of US-Only or Random CS-US Presentations, Intertrial Interval Duration, and Number of Pretraining Trials. Psychological Record, 1980, 30, 561-570.	0.9	7
89	Intertrial interval and unconditioned stimulus durations in autoshaping. Learning and Behavior, 1979, 7, 477-482.	3.4	26
90	EFFECTS OF VARYING THE DURATION OF GRAIN PRESENTATION ON AUTOMAINTENANCE1. Journal of the Experimental Analysis of Behavior, 1978, 29, 27-36.	1.1	17

#	Article	IF	CITATIONS
91	A search for conditioned reinforcement effects in negative automaintenance of keypecking. Bulletin of the Psychonomic Society, 1975, 6, 165-168.	0.2	10