James E Dahlman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235436/publications.pdf Version: 2024-02-01

ΙΔΜΕς Ε ΠΔΗΙ ΜΑΝ

#	Article	IF	CITATIONS
1	CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell, 2014, 159, 440-455.	28.9	1,566
2	Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 2016, 138, 704-717.	13.7	776
3	In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nature Nanotechnology, 2014, 9, 648-655.	31.5	466
4	Drug delivery systems for RNA therapeutics. Nature Reviews Genetics, 2022, 23, 265-280.	16.3	417
5	Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circulation Research, 2016, 119, 853-864.	4.5	318
6	Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nature Biotechnology, 2015, 33, 1159-1161.	17.5	231
7	Small RNA combination therapy for lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3553-61.	7.1	210
8	High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9944-E9952.	7.1	196
9	Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2060-2065.	7.1	185
10	Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 2019, 1, 912-926.	11.9	172
11	RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Science Translational Medicine, 2016, 8, 342ra80.	12.4	169
12	Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nature Biomedical Engineering, 2021, 5, 1059-1068.	22.5	165
13	Silencing or Stimulation? siRNA Delivery and the Immune System. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 77-96.	6.8	161
14	A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation. Nano Letters, 2018, 18, 2148-2157.	9.1	138
15	Genetic and hypoxic alterations of the micro <scp>RNA</scp> â€210― <scp>ISCU</scp> 1/2 axis promote iron–sulfur deficiency and pulmonary hypertension. EMBO Molecular Medicine, 2015, 7, 695-713.	6.9	120
16	Dendrimer-Inspired Nanomaterials for the <i>in Vivo</i> Delivery of siRNA to Lung Vasculature. Nano Letters, 2015, 15, 3008-3016.	9.1	113
17	Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses. Advanced Materials, 2019, 31, e1807748.	21.0	113
18	Constrained Nanoparticles Deliver siRNA and sgRNA to T Cells In Vivo without Targeting Ligands. Advanced Materials, 2019, 31, e1902251.	21.0	99

JAMES E DAHLMAN

#	Article	IF	CITATIONS
19	Analyzing 2000 <i>in Vivo</i> Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery. ACS Nano, 2018, 12, 8341-8349.	14.6	93
20	Mild Innate Immune Activation Overrides Efficient Nanoparticleâ€Mediated RNA Delivery. Advanced Materials, 2020, 32, e1904905.	21.0	84
21	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
22	lonizable Amphiphilic Dendrimerâ€Based Nanomaterials with Alkylâ€Chainâ€6ubstituted Amines for Tunable siRNA Delivery to the Liver Endothelium Inâ€Vivo. Angewandte Chemie - International Edition, 2014, 53, 14397-14401.	13.8	80
23	Nanoparticles That Deliver RNA to Bone Marrow Identified by in Vivo Directed Evolution. Journal of the American Chemical Society, 2018, 140, 17095-17105.	13.7	80
24	Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling. Nature Cell Biology, 2016, 18, 1043-1053.	10.3	79
25	Editing nature: Local roots of global governance. Science, 2018, 362, 527-529.	12.6	67
26	Non-liver mRNA Delivery. Accounts of Chemical Research, 2022, 55, 13-23.	15.6	61
27	Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nature Nanotechnology, 2022, 17, 310-318.	31.5	56
28	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation, 2019, 139, 2238-2255.	1.6	54
29	Testing thousands of nanoparticles inÂvivo using DNA barcodes. Current Opinion in Biomedical Engineering, 2018, 7, 1-8.	3.4	52
30	Using Large Datasets to Understand Nanotechnology. Advanced Materials, 2019, 31, e1902798.	21.0	45
31	Alkane-modified short polyethyleneimine for siRNA delivery. Journal of Controlled Release, 2012, 160, 172-176.	9.9	43
32	Macrophage Notch Ligand Delta-Like 4 Promotes Vein Graft Lesion Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2343-2353.	2.4	43
33	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	8.2	38
34	Modifying a Commonly Expressed Endocytic Receptor Retargets Nanoparticles in Vivo. Nano Letters, 2018, 18, 7590-7600.	9.1	37
35	Loss of α-catenin elicits a cholestatic response and impairs liver regeneration. Scientific Reports, 2014, 4, 6835.	3.3	36
36	Nanoparticles containing constrained phospholipids deliver <scp>mRNA</scp> to liver immune cells in vivo without targeting ligands. Bioengineering and Translational Medicine, 2020, 5, e10161.	7.1	36

JAMES E DAHLMAN

#	Article	IF	CITATIONS
37	Treating Cystic Fibrosis with mRNA and CRISPR. Human Gene Therapy, 2020, 31, 940-955.	2.7	35
38	Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nature Biomedical Engineering, 2022, 6, 157-167.	22.5	35
39	Nanotechnology for InÂvivo Targeted siRNA Delivery. Advances in Genetics, 2014, 88, 37-69.	1.8	34
40	Therapeutic RNA Delivery for COVID and Other Diseases. Advanced Healthcare Materials, 2021, 10, e2002022.	7.6	31
41	Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nature Nanotechnology, 2022, 17, 871-879.	31.5	31
42	Inhibiting Integrin $\hat{l}\pm 5$ Cytoplasmic Domain Signaling Reduces Atherosclerosis and Promotes Arteriogenesis. Journal of the American Heart Association, 2018, 7, .	3.7	25
43	Cell Subtypes Within the Liver Microenvironment Differentially Interact with Lipid Nanoparticles. Cellular and Molecular Bioengineering, 2019, 12, 389-397.	2.1	25
44	Barcoding chemical modifications into nucleic acids improves drug stability <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 7197-7203.	5.8	17
45	Increased PIP3 activity blocks nanoparticle mRNA delivery. Science Advances, 2020, 6, eaba5672.	10.3	16
46	Universal Barcoding Predicts <i>In Vivo</i> ApoE-Independent Lipid Nanoparticle Delivery. Nano Letters, 2022, 22, 4822-4830.	9.1	16
47	Ligand Conjugated Multimeric siRNAs Enable Enhanced Uptake and Multiplexed Gene Silencing. Nucleic Acid Therapeutics, 2019, 29, 231-244.	3.6	11
48	Voices of biotech research. Nature Biotechnology, 2021, 39, 281-286.	17.5	3
49	A lesson in communication. Nature Nanotechnology, 2014, 9, 656-656.	31.5	1
50	Dataset of bond enthalpies (ÎμΑΑ, ÎμΑΒ, ÎμΒΒ) in 975 binary intermetallic compounds. Data in Brief, 2021, 39, 107652.	1.0	0
51	Une vidéo stockée dans l'ADN. Pourlascience Fr, 2019, N° 504 - octobre, 38-45.	0.0	0