Georg Halder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235384/publications.pdf Version: 2024-02-01

CEORC HALDER

#	Article	IF	CITATIONS
1	Abstract 3945: Novel antagonists of TEAD palmitoylation inhibit the growth of Hippo-altered cancers in preclinical models. Cancer Research, 2022, 82, 3945-3945.	0.9	0
2	Regeneration Defects in Yap and Taz Mutant Mouse Livers Are Caused by Bile Duct Disruption and Cholestasis. Gastroenterology, 2021, 160, 847-862.	1.3	38
3	A Mouse Model of Cholangiocarcinoma Uncovers a Role for Tensinâ€4 in Tumor Progression. Hepatology, 2021, 74, 1445-1460.	7.3	9
4	Initiation of hepatic stellate cell activation extends into chronic liver disease. Cell Death and Disease, 2021, 12, 1110.	6.3	23
5	Abstract IA07: Hippo signaling in liver regeneration and liver tumors. , 2020, , .		0
6	Abstract 5229: Discovery of novel potent allosteric inhibitors of YAP/TAZ-TEAD transcription for the treatment of multiple solid tumor types addicted to Hippo signaling. , 2020, , .		0
7	Comparison of the Opn-CreER and Ck19-CreER Drivers in Bile Ducts of Normal and Injured Mouse Livers. Cells, 2019, 8, 380.	4.1	12
8	YAP and TAZ Heterogeneity in Primary Liver Cancer: An Analysis of Its Prognostic and Diagnostic Role. International Journal of Molecular Sciences, 2019, 20, 638.	4.1	44
9	Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science, 2019, 366, 1029-1034.	12.6	140
10	Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nature Reviews Molecular Cell Biology, 2019, 20, 211-226.	37.0	552
11	Cell Junctions in Hippo Signaling. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028753.	5.5	94
12	Modulation of the Hippo pathway and organ growth by RNA processing proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10684-10689.	7.1	13
13	The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nature Genetics, 2018, 50, 1011-1020.	21.4	122
14	Hippo Reprograms the Transcriptional Response to Ras Signaling. Developmental Cell, 2017, 42, 667-680.e4.	7.0	39
15	YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis. Developmental Cell, 2017, 42, 462-478.e7.	7.0	249
16	The Hippo pathway in cellular reprogramming and regeneration of different organs. Current Opinion in Cell Biology, 2016, 43, 62-68.	5.4	43
17	An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model. Current Biology, 2016, 26, 2101-2113.	3.9	87
18	Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nature Communications, 2015, 6, 6683.	12.8	365

#	Article	IF	CITATIONS
19	The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. Journal of Hepatology, 2015, 63, 679-688.	3.7	284
20	Differential regulation of the Hippo pathway by adherens junctions and apical–basal cell polarity modules. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1785-1790.	7.1	112
21	Discovery of Transcription Factors and Regulatory Regions Driving In Vivo Tumor Development by ATAC-seq and FAIRE-seq Open Chromatin Profiling. PLoS Genetics, 2015, 11, e1004994.	3.5	155
22	MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature Communications, 2015, 6, 8357.	12.8	388
23	Walter J Gehring (1939–2014). EMBO Journal, 2014, 33, 1615-1616.	7.8	1
24	Discovering the Hippo pathway protein-protein interactome. Cell Research, 2014, 24, 137-138.	12.0	29
25	The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nature Reviews Drug Discovery, 2014, 13, 63-79.	46.4	743
26	An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene, 2014, 33, 1218-1228.	5.9	94
27	Walter J. Gehring (1939–2014). Developmental Biology, 2014, 395, 1-3.	2.0	1
28	Mask Is Required for the Activity of the Hippo Pathway Effector Yki/YAP. Current Biology, 2013, 23, 229-235.	3.9	71
29	The Hippo Tumor Suppressor Network: From Organ Size Control to Stem Cells and Cancer. Cancer Research, 2013, 73, 6389-6392.	0.9	27
30	Dynamic Rewiring of the Drosophila Retinal Determination Network Switches Its Function from Selector to Differentiation. PLoS Genetics, 2013, 9, e1003731.	3.5	37
31	A non-cell-autonomous tumor suppressor role for Stat in eliminating oncogenic scribble cells. Oncogene, 2013, 32, 4471-4479.	5.9	33
32	Cell Competition and the Hippo Pathway. , 2013, , 307-325.		0
33	Tumor suppression by cell competition through regulation of the Hippo pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 484-489.	7.1	165
34	Diversification of complex butterfly wing patterns by repeated regulatory evolution of a <i>Wnt</i> ligand. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12632-12637.	7.1	244
35	Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature Reviews Molecular Cell Biology, 2012, 13, 591-600.	37.0	788
36	Regulation of the Hippo pathway by cell architecture and mechanical signals. Seminars in Cell and Developmental Biology, 2012, 23, 803-811.	5.0	120

#	Article	IF	CITATIONS
37	Notch Signaling Activates Yorkie Non-Cell Autonomously in Drosophila. PLoS ONE, 2012, 7, e37615.	2.5	20
38	<i>optix</i> Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry. Science, 2011, 333, 1137-1141.	12.6	431
39	Hippo signaling: growth control and beyond. Development (Cambridge), 2011, 138, 9-22.	2.5	898
40	Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO Journal, 2011, 30, 2325-2335.	7.8	376
41	Stem Cell Proliferation in the Skin: α-Catenin Takes Over the Hippo Pathway. Science Signaling, 2011, 4, pe34.	3.6	15
42	Drosophila in cancer research: to boldly go where no one has gone before. Oncogene, 2011, 30, 4063-4066.	5.9	11
43	The Hippo tumor suppressor pathway: a report on â€~the second workshop on the Hippo tumor suppressor pathway'. Cell Death and Differentiation, 2011, 18, 1388-1390.	11.2	2
44	Characterization of a dorsalâ€eye Gal4 Line in <i>Drosophila</i> . Genesis, 2010, 48, 3-7.	1.6	33
45	Characterization of a dorsalâ€eye Gal4 Line in <i>Drosophila</i> . Genesis, 2010, 48, spcone.	1.6	30
46	The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15810-15815.	7.1	275
47	Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1437-1442.	7.1	637
48	Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in Heliconius erato. PLoS Genetics, 2010, 6, e1000796.	3.5	99
49	The Hippo tumor-suppressor pathway regulates apical-domain size in parallel to tissue growth. Journal of Cell Science, 2009, 122, 2351-2359.	2.0	74
50	Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies. BMC Genomics, 2008, 9, 345.	2.8	51
51	Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to induce cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14897-14902.	7.1	142
52	<i>Drosophila melanogaster</i> as a model host to dissect the immunopathogenesis of zygomycosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9367-9372.	7.1	123
53	Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes and Development, 2007, 21, 2747-2761.	5.9	2,487
54	Drosophila melanogasteras a Facile Model for Largeâ€5cale Studies of Virulence Mechanisms and Antifungal Drug Efficacy inCandidaSpecies. Journal of Infectious Diseases, 2006, 193, 1014-1022.	4.0	105

#	Article	IF	CITATIONS
55	The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nature Cell Biology, 2006, 8, 27-36.	10.3	673
56	The bantam MicroRNA Is a Target of the Hippo Tumor-Suppressor Pathway. Current Biology, 2006, 16, 1895-1904.	3.9	245
57	The Fat Cadherin Acts through the Hippo Tumor-Suppressor Pathway to Regulate Tissue Size. Current Biology, 2006, 16, 2090-2100.	3.9	286
58	Lethal Giant Discs, a Novel C2-Domain Protein, Restricts Notch Activation during Endocytosis. Current Biology, 2006, 16, 2228-2233.	3.9	88
59	Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17225-17230.	7.1	115
60	Tollâ€DeficientDrosophilaFlies as a Fast, Highâ€Throughput Model for the Study of Antifungal Drug Efficacy against Invasive Aspergillosis andAspergillusVirulence. Journal of Infectious Diseases, 2005, 191, 1188-1195.	4.0	84
61	Atypical PKCÂ contributes to poor prognosis through loss of apical-basal polarity and Cyclin E overexpression in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12519-12524.	7.1	231
62	Drosophila as an emerging model to study metastasis. Genome Biology, 2004, 5, 216.	9.6	13
63	Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biology, 2003, 5, 914-920.	10.3	652
64	Shar-pei mediates cell proliferation arrest during imaginal disc growth inDrosophila. Development (Cambridge), 2002, 129, 5719-5730.	2.5	302
65	Selector and signalling molecules cooperate in organ patterning. Nature Cell Biology, 2002, 4, E48-E51.	10.3	45
66	Binding of the Vestigial co-factor switches the DNA-target selectivity of the Scalloped selector protein. Development (Cambridge), 2001, 128, 3295-3305.	2.5	75
67	Expression of the blistered/DSRF gene is controlled by different morphogens during Drosophila trachea and wing development. Mechanisms of Development, 2000, 96, 27-36.	1.7	23
68	Ectopic gene expression and homeotic transformations in arthropods using recombinant Sindbis viruses. Current Biology, 1999, 9, 1279-1287.	3.9	63
69	Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Current Biology, 1999, 9, 109-115.	3.9	208
70	twin of eyeless, a Second Pax-6 Gene of Drosophila, Acts Upstream of eyeless in the Control of Eye Development. Molecular Cell, 1999, 3, 297-307.	9.7	347
71	The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in <i>Drosophila</i> . Genes and Development, 1998, 12, 3900-3909.	5.9	209
72	Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the <i>Drosophila</i> haltere. Genes and Development, 1998, 12, 1474-1482.	5.9	291

#	Article	IF	CITATIONS
73	Squid Pax-6 and eye development. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2421-2426.	7.1	195
74	<i>PAX-6</i> IN DEVELOPMENT AND EVOLUTION. Annual Review of Neuroscience, 1997, 20, 483-532.	10.7	433
75	Induction of Ectopic Eyes by Targeted Expression of the <i>eyeless</i> Gene in <i>Drosophila</i> . Science, 1995, 267, 1788-1792.	12.6	1,516
76	New perspectives on eye evolution. Current Opinion in Genetics and Development, 1995, 5, 602-609.	3.3	225
77	Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell, 1994, 79, 221-231.	28.9	427