Kenneth Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235335/publications.pdf

Version: 2024-02-01

1254 1238 55,104 334 110 226 citations h-index g-index papers 339 339 339 51473 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adipokines in inflammation and metabolic disease. Nature Reviews Immunology, 2011, 11, 85-97.	22.7	3,378
2	Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell, 2004, 117, 399-412.	28.9	2,490
3	Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999, 399, 597-601.	27.8	2,384
4	The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals Nature Medicine, 2000, 6, 1004-1010.	30.7	1,355
5	Constitutive Expression of phVEGF < sub > 165 < /sub > After Intramuscular Gene Transfer Promotes Collateral Vessel Development in Patients With Critical Limb Ischemia. Circulation, 1998, 97, 1114-1123.	1.6	1,104
6	Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science, 2017, 355, 842-847.	12.6	999
7	Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet, The, 1996, 348, 370-374.	13.7	966
8	Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2–dependent mechanisms. Nature Medicine, 2005, 11, 1096-1103.	30.7	942
9	Role of Akt Signaling in Vascular Homeostasis and Angiogenesis. Circulation Research, 2002, 90, 1243-1250.	4.5	901
10	Cardiomyocyte Grafting for Cardiac Repair: Graft Cell Death and Anti-Death Strategies. Journal of Molecular and Cellular Cardiology, 2001, 33, 907-921.	1.9	823
11	Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. Journal of Clinical Investigation, 2005, 115, 2108-2118.	8.2	822
12	Akt Promotes Survival of Cardiomyocytes In Vitro and Protects Against Ischemia-Reperfusion Injury in Mouse Heart. Circulation, 2000, 101, 660-667.	1.6	783
13	SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase. Journal of Biological Chemistry, 2008, 283, 20015-20026.	3.4	699
14	Adiponectin as an anti-inflammatory factor. Clinica Chimica Acta, 2007, 380, 24-30.	1.1	673
15	Adiponectin Stimulates Angiogenesis by Promoting Cross-talk between AMP-activated Protein Kinase and Akt Signaling in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 1304-1309.	3.4	671
16	Adiponectin-mediated modulation of hypertrophic signals in the heart. Nature Medicine, 2004, 10, 1384-1389.	30.7	637
17	Obesity, adiponectin and vascular inflammatory disease. Current Opinion in Lipidology, 2003, 14, 561-566.	2.7	636
18	HMG-CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. Journal of Clinical Investigation, 2001, 108, 399-405.	8.2	587

#	Article	lF	CITATIONS
19	Selective Suppression of Endothelial Cell Apoptosis by the High Molecular Weight Form of Adiponectin. Circulation Research, 2004, 94, e27-31.	4.5	581
20	Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis Journal of Cell Biology, 1996, 132, 657-666.	5.2	537
21	Cardiac Stem Cell and Myocyte Aging, Heart Failure, and Insulin-Like Growth Factor-1 Overexpression. Circulation Research, 2004, 94, 514-524.	4.5	527
22	Adiponectin Promotes Macrophage Polarization toward an Anti-inflammatory Phenotype. Journal of Biological Chemistry, 2010, 285, 6153-6160.	3.4	505
23	Reactive Oxygen Species Mediate the Activation of Akt/Protein Kinase B by Angiotensin II in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1999, 274, 22699-22704.	3.4	504
24	Akt Mediates Cytoprotection of Endothelial Cells by Vascular Endothelial Growth Factor in an Anchorage-dependent Manner. Journal of Biological Chemistry, 1999, 274, 16349-16354.	3.4	501
25	Resistance to Apoptosis Conferred by Cdk Inhibitors During Myocyte Differentiation. Science, 1996, 273, 359-361.	12.6	482
26	Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circulation Research, 2016, 118, 1786-1807.	4.5	455
27	Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through aÂMechanism Involving the IL-1β/NLRP3ÂInflammasome. Journal of the American College of Cardiology, 2018, 71, 875-886.	2.8	452
28	Sfrp5 Is an Anti-Inflammatory Adipokine That Modulates Metabolic Dysfunction in Obesity. Science, 2010, 329, 454-457.	12.6	407
29	Adipokines: A link between obesity and cardiovascular disease. Journal of Cardiology, 2014, 63, 250-259.	1.9	404
30	Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 2015, 525, 479-485.	27.8	402
31	AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of Metformin in Insulin-resistant Human HepG2 Cells. Journal of Biological Chemistry, 2004, 279, 47898-47905.	3.4	401
32	Shear Stress Stimulates Phosphorylation of Endothelial Nitric-oxide Synthase at Ser1179 by Akt-independent Mechanisms. Journal of Biological Chemistry, 2002, 277, 3388-3396.	3.4	395
33	Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell, 2006, 10, 159-170.	16.8	388
34	Vascular Endothelial Growth Factor–Stimulated Actin Reorganization and Migration of Endothelial Cells Is Regulated via the Serine/Threonine Kinase Akt. Circulation Research, 2000, 86, 892-896.	4. 5	386
35	MyoD-Induced Expression of p21 Inhibits Cyclin-Dependent Kinase Activity upon Myocyte Terminal Differentiation. Molecular and Cellular Biology, 1995, 15, 3823-3829.	2.3	383
36	Adiponectin Replenishment Ameliorates Obesity-Related Hypertension. Hypertension, 2006, 47, 1108-1116.	2.7	368

3

#	Article	IF	CITATIONS
37	Akt Activity Negatively Regulates Phosphorylation of AMP-activated Protein Kinase in the Heart. Journal of Biological Chemistry, 2003, 278, 39422-39427.	3.4	350
38	FGF21 is an Aktâ€regulated myokine. FEBS Letters, 2008, 582, 3805-3810.	2.8	344
39	Akt1/protein kinase BÂ is critical for ischemic and VEGF-mediated angiogenesis. Journal of Clinical Investigation, 2005, 115, 2119-2127.	8.2	341
40	Fast/Glycolytic Muscle Fiber Growth Reduces Fat Mass and Improves Metabolic Parameters in Obese Mice. Cell Metabolism, 2008, 7, 159-172.	16.2	331
41	Adiponectin modulates inflammatory reactions via calreticulin receptor–dependent clearance of early apoptotic bodies. Journal of Clinical Investigation, 2007, 117, 375-386.	8.2	319
42	AMP-activated Protein Kinase (AMPK) Signaling in Endothelial Cells Is Essential for Angiogenesis in Response to Hypoxic Stress. Journal of Biological Chemistry, 2003, 278, 31000-31006.	3.4	314
43	Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes and Development, 2006, 20, 3347-3365.	5.9	309
44	The FOXO3a Transcription Factor Regulates Cardiac Myocyte Size Downstream of AKT Signaling. Journal of Biological Chemistry, 2005, 280, 20814-20823.	3.4	308
45	Mitofusin-2 Maintains Mitochondrial Structure and Contributes to Stress-Induced Permeability Transition in Cardiac Myocytes. Molecular and Cellular Biology, 2011, 31, 1309-1328.	2.3	306
46	Adiponectin Stimulates Angiogenesis in Response to Tissue Ischemia through Stimulation of AMP-activated Protein Kinase Signaling. Journal of Biological Chemistry, 2004, 279, 28670-28674.	3.4	300
47	Cell cycle exit upon myogenic differentiation. Current Opinion in Genetics and Development, 1997, 7, 597-602.	3.3	296
48	Vascular Endothelial Growth Factor Blockade Promotes the Transition From Compensatory Cardiac Hypertrophy to Failure in Response to Pressure Overload. Hypertension, 2006, 47, 887-893.	2.7	292
49	T-cadherin is critical for adiponectin-mediated cardioprotection in mice. Journal of Clinical Investigation, 2010, 120, 4342-4352.	8.2	291
50	CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circulation Research, 2018, 123, 335-341.	4.5	282
51	Adiponectin actions in the cardiovascular system. Cardiovascular Research, 2007, 74, 11-18.	3.8	272
52	Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB Journal, 2011, 25, 1664-1679.	0.5	261
53	Follistatin-like 1, a Secreted Muscle Protein, Promotes Endothelial Cell Function and Revascularization in Ischemic Tissue through a Nitric-oxide Synthase-dependent Mechanism. Journal of Biological Chemistry, 2008, 283, 32802-32811.	3.4	258
54	Akt Down-regulation of p38 Signaling Provides a Novel Mechanism of Vascular Endothelial Growth Factor-mediated Cytoprotection in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 30359-30365.	3.4	253

#	Article	IF	CITATIONS
55	Sphingosine 1-Phosphate Activates Akt, Nitric Oxide Production, and Chemotaxis through a GiProtein/Phosphoinositide 3-Kinase Pathway in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 19672-19677.	3.4	244
56	The Akt-regulated Forkhead Transcription Factor FOXO3a Controls Endothelial Cell Viability through Modulation of the Caspase-8 Inhibitor FLIP. Journal of Biological Chemistry, 2004, 279, 1513-1525.	3.4	240
57	Phosphatidylinositol 3-Kinase/Akt Activity Regulates c-FLIP Expression in Tumor Cells. Journal of Biological Chemistry, 2001, 276, 6893-6896.	3.4	238
58	HMG-CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. Journal of Clinical Investigation, 2001, 108, 399-405.	8.2	233
59	NADPH Oxidase 4 Promotes Endothelial Angiogenesis Through Endothelial Nitric Oxide Synthase Activation. Circulation, 2011, 124, 731-740.	1.6	232
60	AMP-Activated Protein Kinase Signaling Stimulates VEGF Expression and Angiogenesis in Skeletal Muscle. Circulation Research, 2005, 96, 838-846.	4.5	228
61	Evidence for the Rapid Onset of Apoptosis in Medial Smooth Muscle Cells After Balloon Injury. Circulation, 1997, 95, 981-987.	1.6	225
62	Follistatin-Like 1 Is an Akt-Regulated Cardioprotective Factor That Is Secreted by the Heart. Circulation, 2008, 117, 3099-3108.	1.6	223
63	Flice-Inhibitory Protein Expression during Macrophage Differentiation Confers Resistance to FAS-Mediated Apoptosis. Journal of Experimental Medicine, 1999, 190, 1679-1688.	8.5	219
64	Adiponectin protects against the development of systolic dysfunction following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2007, 42, 1065-1074.	1.9	214
65	Oxidized LDL activates fas-mediated endothelial cell apoptosis Journal of Clinical Investigation, 1998, 102, 1682-1689.	8.2	213
66	TNFÎ \pm regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nature Medicine, 1998, 4, 415-420.	30.7	211
67	Vascular Endothelial Growth Factor Activates PI3K/Akt/Forkhead Signaling in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 294-300.	2.4	208
68	Cardioprotection by Adiponectin. Trends in Cardiovascular Medicine, 2006, 16, 141-146.	4.9	207
69	Glycoprotein 130 Regulates Cardiac Myocyte Survival in Doxorubicin-Induced Apoptosis Through Phosphatidylinositol 3-Kinase/Akt Phosphorylation and Bcl-xL/Caspase-3 Interaction. Circulation, 2001, 103, 555-561.	1.6	201
70	Cell Cycle Withdrawal Promotes Myogenic Induction of Akt, a Positive Modulator of Myocyte Survival. Molecular and Cellular Biology, 1999, 19, 5073-5082.	2.3	200
71	Phosphatidylinositol 3-Kinase/Akt Signaling Controls Endothelial Cell Sensitivity to Fas-Mediated Apoptosis via Regulation of FLICE-Inhibitory Protein (FLIP). Circulation Research, 2001, 89, 13-19.	4.5	198
72	Mitofusins 1 and 2 Are Essential for Postnatal Metabolic Remodeling in Heart. Circulation Research, 2012, 111, 1012-1026.	4.5	198

#	Article	IF	Citations
73	Akt Signaling Mediates Postnatal Heart Growth in Response to Insulin and Nutritional Status. Journal of Biological Chemistry, 2002, 277, 37670-37677.	3.4	197
74	Nuclear Targeting of Akt Enhances Kinase Activity and Survival of Cardiomyocytes. Circulation Research, 2004, 94, 884-891.	4.5	197
75	Acute modulation of endothelial Akt/PKB activity alters nitric oxide–dependent vasomotor activity in vivo. Journal of Clinical Investigation, 2000, 106, 493-499.	8.2	186
76	Arterial Gene Therapy for Therapeutic Angiogenesis in Patients With Peripheral Artery Disease. Circulation, 1995, 91, 2687-2692.	1.6	179
77	Functional antagonism between YY1 and the serum response factor Molecular and Cellular Biology, 1992, 12, 4209-4214.	2.3	177
78	Vascular Cell Apoptosis in Remodeling, Restenosis, and Plaque Rupture. Circulation Research, 2000, 87, 184-188.	4 . 5	176
79	Modulation by Peroxynitrite of Akt- and AMP-activated Kinase-dependent Ser1179 Phosphorylation of Endothelial Nitric Oxide Synthase. Journal of Biological Chemistry, 2002, 277, 32552-32557.	3.4	172
80	Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H167-H179.	3.2	165
81	p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene Genes and Development, 1997, 11 , $1674-1689$.	5.9	164
82	An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nature Medicine, 2014, 20, 1464-1471.	30.7	164
83	Adrenomedullin Induces Endothelium-Dependent Vasorelaxation via the Phosphatidylinositol 3-Kinase/Akt–Dependent Pathway in Rat Aorta. Circulation Research, 2001, 89, 63-70.	4.5	157
84	Impaired Clearance of Apoptotic Cells Promotes Synergy between Atherogenesis and Autoimmune Disease. Journal of Experimental Medicine, 2004, 199, 1121-1131.	8.5	155
85	Therapeutic Impact of Follistatin-Like 1 on Myocardial Ischemic Injury in Preclinical Models. Circulation, 2012, 126, 1728-1738.	1.6	155
86	Cardiac-specific Deletion of LKB1 Leads to Hypertrophy and Dysfunction. Journal of Biological Chemistry, 2009, 284, 35839-35849.	3.4	151
87	Adipokines, Myokines and Cardiovascular Disease. Circulation Journal, 2009, 73, 13-18.	1.6	151
88	Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes Molecular and Cellular Biology, 1989, 9, 2191-2201.	2.3	150
89	Impaired Angiogenesis in Glutathione Peroxidase-1–Deficient Mice Is Associated With Endothelial Progenitor Cell Dysfunction. Circulation Research, 2006, 98, 254-261.	4. 5	147
90	Loss of Mitofusin 2 Promotes Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2012, 287, 20321-20332.	3.4	147

#	Article	IF	CITATIONS
91	Myogenic Akt Signaling Regulates Blood Vessel Recruitment during Myofiber Growth. Molecular and Cellular Biology, 2002, 22, 4803-4814.	2.3	146
92	Glycogen-Synthase Kinase $3\hat{l}^2/\hat{l}^2$ -Catenin Axis Promotes Angiogenesis Through Activation of Vascular Endothelial Growth Factor Signaling in Endothelial Cells. Circulation Research, 2005, 96, 308-318.	4.5	144
93	Endothelial Cell Apoptosis Induced by Oxidized LDL Is Associated with the Down-regulation of the Cellular Caspase Inhibitor FLIP. Journal of Biological Chemistry, 1998, 273, 33103-33106.	3.4	143
94	Akt Signaling Regulates Side Population Cell Phenotype via Bcrp1 Translocation. Journal of Biological Chemistry, 2003, 278, 39068-39075.	3.4	142
95	Adaptive and Maladaptive Behavior in Prader-Willi Syndrome. Journal of the American Academy of Child and Adolescent Psychiatry, 1992, 31, 1131-1136.	0.5	140
96	Obesity Increases Vascular Senescence and Susceptibility to Ischemic Injury Through Chronic Activation of Akt and mTOR. Science Signaling, 2009, 2, ra11.	3.6	140
97	Profiles, Correlates, and Trajectories of Intelligence in Prader-Willi Syndrome. Journal of the American Academy of Child and Adolescent Psychiatry, 1992, 31, 1125-1130.	0.5	139
98	Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1213-1217.	7.1	139
99	Suppression of Akt Signaling Induces Fas Ligand Expression: Involvement of Caspase and Jun Kinase Activation in Akt-Mediated Fas Ligand Regulation. Molecular and Cellular Biology, 2002, 22, 680-691.	2.3	139
100	T-cadherin Is Essential for Adiponectin-mediated Revascularization*. Journal of Biological Chemistry, 2013, 288, 24886-24897.	3.4	139
101	Microvascular patterning is controlled by fine-tuning the Akt signal. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 128-133.	7.1	138
102	Intracoronary, Adenovirus-mediated Akt Gene Transfer in Heart Limits Infarct Size Following Ischemia-reperfusion Injury in Vivo. Journal of Molecular and Cellular Cardiology, 2000, 32, 2397-2402.	1.9	137
103	Molecular cloning of a diverged homeobox gene that is rapidly down-regulated during the GO/G1 transition in vascular smooth muscle cells Molecular and Cellular Biology, 1993, 13, 3722-3733.	2.3	134
104	Ageing is associated with diminished apoptotic cell clearance <i>in vivo</i> . Clinical and Experimental Immunology, 2008, 152, 448-455.	2.6	134
105	Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion. Diabetes, 2015, 64, 1235-1248.	0.6	134
106	Somatic Mutations and Clonal Hematopoiesis. Circulation Research, 2018, 122, 523-532.	4.5	129
107	Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E899-906.	7.1	118
108	TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. Cell Reports, 2020, 33, 108326.	6.4	117

#	Article	IF	Citations
109	Vascular Endothelial Cells and Smooth Muscle Cells Differ in Expression of Fas and Fas Ligand and in Sensitivity to Fas Ligand–Induced Cell Death. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 309-316.	2.4	116
110	Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1035-L1042.	2.9	116
111	GATA-6 Induces p21Cip1 Expression and G1Cell Cycle Arrest. Journal of Biological Chemistry, 1998, 273, 13713-13718.	3.4	115
112	Adipolin/C1qdc2/CTRP12 Protein Functions as an Adipokine That Improves Glucose Metabolism. Journal of Biological Chemistry, 2011, 286, 34552-34558.	3.4	114
113	JAK2-Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine HeartÂFailure. JACC Basic To Translational Science, 2019, 4, 684-697.	4.1	114
114	A Pneumocyte–Macrophage Paracrine Lipid Axis Drives the Lung toward Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 74-86.	2.9	113
115	Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling. Circulation, 2019, 139, 2570-2584.	1.6	113
116	Regulation of Angiogenesis by Glycogen Synthase Kinase-3 \hat{l}^2 . Journal of Biological Chemistry, 2002, 277, 41888-41896.	3.4	111
117	Intraneuronal Â-Amyloid Expression Downregulates the Akt Survival Pathway and Blunts the Stress Response. Journal of Neuroscience, 2005, 25, 10960-10969.	3.6	109
118	Caloric Restriction Stimulates Revascularization in Response to Ischemia via Adiponectin-mediated Activation of Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2009, 284, 1718-1724.	3.4	109
119	Calorie Restriction Prevents Hypertension and Cardiac Hypertrophy in the Spontaneously Hypertensive Rat. Hypertension, 2010, 56, 412-421.	2.7	109
120	The Whitening of Brown Fat and Its Implications for Weight Management in Obesity. Current Obesity Reports, 2015, 4, 224-229.	8.4	108
121	Reversal of GATA-6 Downregulation Promotes Smooth Muscle Differentiation and Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Artery. Circulation Research, 1999, 84, 647-654.	4.5	107
122	DIP2A Functions as a FSTL1 Receptor. Journal of Biological Chemistry, 2010, 285, 7127-7134.	3.4	106
123	mTORC1 Activation Regulates \hat{l}^2 -Cell Mass and Proliferation by Modulation of Cyclin D2 Synthesis and Stability. Journal of Biological Chemistry, 2009, 284, 7832-7842.	3.4	105
124	The Good, the Bad, and the Ugly of interleukinâ€6 signaling. EMBO Journal, 2014, 33, 1425-1427.	7.8	105
125	Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury. Journal of Biological Chemistry, 2016, 291, 2566-2575.	3.4	104
126	Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L432-L438.	2.9	103

#	Article	IF	CITATIONS
127	The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice. Circulation, 2012, 125, 1757-1764.	1.6	103
128	Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight, 2020, 5, .	5.0	103
129	Forkhead Transcription Factor FOXO3a Is a Negative Regulator of Angiogenic Immediate Early Gene CYR61, Leading to Inhibition of Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia. Circulation Research, 2007, 100, 372-380.	4.5	102
130	Angiopoietinâ€1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB Journal, 2002, 16, 1-24.	0.5	101
131	Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. Journal of Molecular and Cellular Cardiology, 2010, 49, 210-220.	1.9	101
132	Decorin-mediated Signal Transduction in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 40687-40692.	3.4	100
133	Cross-Binding of Factors to Functionally Different Promoter Elements in c <i>-fos</i> and Skeletal Actin Genes. Molecular and Cellular Biology, 1989, 9, 2191-2201.	2.3	100
134	The Novel SPARC Family Member SMOC-2 Potentiates Angiogenic Growth Factor Activity. Journal of Biological Chemistry, 2006, 281, 22855-22864.	3.4	99
135	Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development (Cambridge), 2007, 134, 4449-4458.	2.5	99
136	Forkhead Transcription Factors and Cardiovascular Biology. Circulation Research, 2008, 102, 16-31.	4.5	98
137	Inhibition of Myogenesis by Multiple Cyclin-Cdk Complexes. Journal of Biological Chemistry, 1997, 272, 791-797.	3.4	96
138	An Inhibitory Role of the Phosphatidylinositol 3-Kinase-signaling Pathway in Vascular Endothelial Growth Factor-induced Tissue Factor Expression. Journal of Biological Chemistry, 2001, 276, 33428-33434.	3.4	96
139	Cardiokines. Circulation, 2012, 126, e327-32.	1.6	96
140	Evidence for Adipose-Muscle Cross Talk: Opposing Regulation of Muscle Proteolysis by Adiponectin and Fatty Acids. Endocrinology, 2007, 148, 5696-5705.	2.8	95
141	Cardiovascular Disease, Aging, and Clonal Hematopoiesis. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 419-438.	22.4	94
142	Adiponectin Attenuates Lipopolysaccharide-Induced Acute Lung Injury through Suppression of Endothelial Cell Activation. Journal of Immunology, 2012, 188, 854-863.	0.8	93
143	Humans and Mice Display Opposing Patterns of "Browning―Gene Expression in Visceral and Subcutaneous White Adipose Tissue Depots. Frontiers in Cardiovascular Medicine, 2017, 4, 27.	2.4	93
144	Different regulatory sequences control creatine kinase-M gene expression in directly injected skeletal and cardiac muscle Molecular and Cellular Biology, 1993, 13, 1264-1272.	2.3	91

#	Article	IF	CITATIONS
145	The Role of Homeobox Genes in Vascular Remodeling and Angiogenesis. Circulation Research, 2000, 87, 865-872.	4. 5	91
146	Protein kinase B/Akt activates c-Jun NH ₂ -terminal kinase by increasing NO production in response to shear stress. Journal of Applied Physiology, 2001, 91, 1574-1581.	2.5	91
147	Celecoxib, a Cyclooxygenase-2 Inhibitor, Reduces Neointimal Hyperplasia Through Inhibition of Akt Signaling. Circulation, 2004, 110, 301-308.	1.6	90
148	Akt Signaling and Growth of the Heart. Circulation, 2006, 113, 2032-2034.	1.6	90
149	Metabolic benefits of resistance training and fast glycolytic skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E3-E10.	3.5	90
150	Nitric Oxide–Induced Downregulation of Cdk2 Activity and Cyclin A Gene Transcription in Vascular Smooth Muscle Cells. Circulation, 1998, 97, 2066-2072.	1.6	89
151	Activated Akt Protects the Lung from Oxidant-Induced Injury and Delays Death of Mice. Journal of Experimental Medicine, 2001, 193, 545-550.	8.5	88
152	Simvastatin Treatment Ameliorates Autoimmune Disease Associated with Accelerated Atherosclerosis in a Murine Lupus Model. Journal of Immunology, 2006, 177, 3028-3034.	0.8	88
153	Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a–JNK Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 561-569.	2.4	87
154	The Peroxisome Proliferator-Activated Receptor \hat{I}^3 Agonist Rosiglitazone Ameliorates Murine Lupus by Induction of Adiponectin. Journal of Immunology, 2009, 182, 340-346.	0.8	86
155	Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure*. Critical Care Medicine, 2010, 38, 2329-2334.	0.9	86
156	Elevated Myocardial Akt Signaling Ameliorates Doxorubicin-induced Congestive Heart Failure and Promotes Heart Growth. Journal of Molecular and Cellular Cardiology, 2002, 34, 1241-1247.	1.9	85
157	PKCα Activates eNOS and Increases Arterial Blood Flow In Vivo. Circulation Research, 2005, 97, 482-487.	4.5	85
158	C1q/Tumor Necrosis Factor-Related Protein 9 Protects against Acute Myocardial Injury through an Adiponectin Receptor I-AMPK-Dependent Mechanism. Molecular and Cellular Biology, 2015, 35, 2173-2185.	2.3	85
159	Follistatinâ€ike 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Molecular Medicine, 2016, 8, 949-966.	6.9	85
160	Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells. Journal of Molecular and Cellular Cardiology, 2011, 51, 885-893.	1.9	84
161	Retinoic Acid Receptor \hat{l}^2 Stimulates Hepatic Induction of Fibroblast Growth Factor 21 to Promote Fatty Acid Oxidation and Control Whole-body Energy Homeostasis in Mice. Journal of Biological Chemistry, 2013, 288, 10490-10504.	3.4	84
162	Activin A and Follistatin-Like 3 Determine the Susceptibility of Heart to Ischemic Injury. Circulation, 2009, 120, 1606-1615.	1.6	83

#	Article	IF	Citations
163	Adiponectin Promotes Revascularization of Ischemic Muscle through a Cyclooxygenase 2-Dependent Mechanism. Molecular and Cellular Biology, 2009, 29, 3487-3499.	2.3	83
164	Adiponectin accumulates in myocardial tissue that has been damaged by ischemia-reperfusion injury via leakage from the vascular compartment. Cardiovascular Research, 2007, 74, 471-479.	3.8	82
165	DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells Molecular and Cellular Biology, 1988, 8, 1800-1802.	2.3	81
166	Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. Journal of Molecular and Cellular Cardiology, 2005, 38, 375-385.	1.9	80
167	Adiponectin Deficiency, Diastolic Dysfunction, and Diastolic Heart Failure. Endocrinology, 2010, 151, 322-331.	2.8	80
168	Expression of gax, a Growth Arrest Homeobox Gene, Is Rapidly Down-regulated in the Rat Carotid Artery during the Proliferative Response to Balloon Injury. Journal of Biological Chemistry, 1995, 270, 5457-5461.	3.4	79
169	Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science, 2022, 377, 292-297.	12.6	79
170	Statin therapy and angiogenesis. Current Opinion in Lipidology, 2003, 14, 599-603.	2.7	78
171	Impact of a Single Intracoronary Administration of Adiponectin on Myocardial Ischemia/Reperfusion Injury in a Pig Model. Circulation: Cardiovascular Interventions, 2010, 3, 166-173.	3.9	78
172	Cardiac growth and angiogenesis coordinated by intertissue interactions. Journal of Clinical Investigation, 2007, 117, 3176-3179.	8.2	77
173	Regulation of smooth muscle cell migration and integrin expression by the Gax transcription factor. Journal of Clinical Investigation, 1999, 104, 1469-1480.	8.2	77
174	Adiponectin promotes endothelial progenitor cell number and function. FEBS Letters, 2008, 582, 1607-1612.	2.8	76
175	Adenovirus-Mediated Delivery of Fas Ligand Inhibits Intimal Hyperplasia After Balloon Injury in Immunologically Primed Animals. Circulation, 1999, 99, 1776-1779.	1.6	74
176	Adiponectin Ameliorates Doxorubicin-induced Cardiotoxicity through Akt Protein-dependent Mechanism. Journal of Biological Chemistry, 2011, 286, 32790-32800.	3.4	74
177	Decreased vascular lesion formation in mice with inducible endothelial-specific expression of protein kinase Akt. Journal of Clinical Investigation, 2006, 116, 334-343.	8.2	74
178	Glycolytic fastâ€twitch muscle fiber restoration counters adverse ageâ€related changes in body composition and metabolism. Aging Cell, 2014, 13, 80-91.	6.7	73
179	Al 2 42 generation is toxic to endothelial cells and inhibits eNOS function through an Akt/GSK-3l 2 signaling-dependent mechanism. Neurobiology of Aging, 2003, 24, 437-451.	3.1	71
180	A Novel Role for Adiponectin in the Regulation of Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1219-1221.	2.4	71

#	Article	IF	CITATIONS
181	Airway Delivery of Soluble Factors from Plastic-Adherent Bone Marrow Cells Prevents Murine Asthma. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 207-216.	2.9	70
182	Adiponectin Suppresses Pathological Microvessel Formation in Retina Through Modulation of Tumor Necrosis Factor-α Expression. Circulation Research, 2009, 104, 1058-1065.	4.5	69
183	Cloning, chromosomal localization and expression analysis of the mouse Akt2 oncogene. Oncogene, 1995, 11, 1055-60.	5.9	69
184	Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1201-H1214.	3.2	66
185	Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury. Cardiovascular Research, 2014, 103, 111-120.	3.8	66
186	Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. Journal of Clinical Investigation, 2000, 106, 1011-1020.	8.2	66
187	Antiangiogenic Actions of Vascular Endothelial Growth Factor-A ₁₆₅ b, an Inhibitory Isoform of Vascular Endothelial Growth Factor-A, in Human Obesity. Circulation, 2014, 130, 1072-1080.	1.6	65
188	Follistatin-Like 1 in Chronic Systolic Heart Failure. Circulation: Heart Failure, 2011, 4, 621-627.	3.9	64
189	Functional implications of mitofusin 2-mediated mitochondrial-SR tethering. Journal of Molecular and Cellular Cardiology, 2015, 78, 123-128.	1.9	62
190	Modulation of Angiotensin II–Mediated Cardiac Remodeling by the MEF2A Target Gene Xirp2. Circulation Research, 2010, 106, 952-960.	4.5	61
191	Cardiac PI3K-Akt Impairs Insulin-Stimulated Glucose Uptake Independent of mTORC1 and GLUT4 Translocation. Molecular Endocrinology, 2013, 27, 172-184.	3.7	61
192	Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation. PLoS ONE, 2014, 9, e110269.	2.5	60
193	Wnt5a-Mediated Neutrophil Recruitment Has an Obligatory Role in Pressure Overload–Induced Cardiac Dysfunction. Circulation, 2019, 140, 487-499.	1.6	60
194	Percutaneous delivery of the gax gene inhibits vessel stenosis in a rabbit model of balloon angioplasty. Cardiovascular Research, 1997, 35, 536-546.	3.8	59
195	Coordinate regulation of cell cycle and apoptosis during myogenesis. , 1997, 3, 53-58.		58
196	Adenoviral Constructs Encoding Phosphorylation-Competent Full-length and Truncated Forms of the Human Retinoblastoma Protein Inhibit Myocyte Proliferation and Neointima Formation. Circulation, 1997, 96, 1899-1905.	1.6	58
197	Androgen Receptor Counteracts Doxorubicin-Induced Cardiotoxicity in Male Mice. Molecular Endocrinology, 2010, 24, 1338-1348.	3.7	57
198	Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression. FASEB Journal, 2005, 19, 1042-1044.	0.5	56

#	Article	IF	CITATIONS
199	Glutaredoxin-1 Up-regulation Induces Soluble Vascular Endothelial Growth Factor Receptor 1, Attenuating Post-ischemia Limb Revascularization. Journal of Biological Chemistry, 2014, 289, 8633-8644.	3.4	56
200	Akt signaling mediates VEGF/VPF vascular permeability in vivo. FEBS Letters, 2002, 532, 67-69.	2.8	54
201	Endothelial Akt Signaling Is Rate-Limiting for Rapamycin Inhibition of Mouse Mammary Tumor Progression. Cancer Research, 2007, 67, 5070-5075.	0.9	54
202	Usefulness of Adiponectin to Predict Myocardial Salvage Following Successful Reperfusion in Patients With Acute Myocardial Infarction. American Journal of Cardiology, 2008, 101, 1712-1715.	1.6	54
203	Cyclooxygenaseâ€2 induction by adiponectin is regulated by a sphingosine kinaseâ€1 dependent mechanism in cardiac myocytes. FEBS Letters, 2008, 582, 1147-1150.	2.8	52
204	Myogenic Akt signaling attenuates muscular degeneration, promotes myofiber regeneration and improves muscle function in dystrophin-deficient mdx mice. Human Molecular Genetics, 2011, 20, 1324-1338.	2.9	52
205	Androgen Receptor Promotes Sex-Independent Angiogenesis in Response to Ischemia and Is Required for Activation of Vascular Endothelial Growth Factor Receptor Signaling. Circulation, 2013, 128, 60-71.	1.6	52
206	DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. Molecular and Cellular Biology, 1988, 8, 1800-1802.	2.3	51
207	Adiponectin upregulates hepatocyte CMKLR1 which is reduced in human fatty liver. Molecular and Cellular Endocrinology, 2012, 349, 248-254.	3. 2	50
208	Cardiometabolic effects of adiponectin. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 81-91.	4.7	50
209	Fas Ligand Overexpression on Allograft Endothelium Inhibits Inflammatory Cell Infiltration and Transplant-Associated Intimal Hyperplasia. Journal of Immunology, 2001, 166, 6964-6971.	0.8	49
210	Cardiovascular and Metabolic Regulation by the Adiponectin/C1q/Tumor Necrosis Factor–Related Protein Family of Proteins. Circulation, 2012, 125, 3066-3068.	1.6	49
211	Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H243-H255.	3.2	49
212	Akt1-Mediated Fast/Glycolytic Skeletal Muscle Growth Attenuates Renal Damage in Experimental Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 2800-2811.	6.1	49
213	The myosin light chain enhancer and the skeletal actin promoter share a binding site for factors involved in muscle-specific gene expression Molecular and Cellular Biology, 1991, 11, 3735-3744.	2.3	48
214	Thiazolidinediones Reduce Pathological Neovascularization in Ischemic Retina Via an Adiponectin-Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 46-53.	2.4	48
215	Bax-mediated cell death by the Gax homeoprotein requires mitogen activation but is independent of cell cycle activity. EMBO Journal, 1998, 17, 3576-3586.	7.8	47
216	Is extravasation a Fas-regulated process?. Trends in Molecular Medicine, 1999, 5, 61-67.	2.6	47

#	Article	IF	Citations
217	Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure. Physiological Genomics, 2006, 27, 156-170.	2.3	47
218	Adiponectin and cardiovascular inflammatory responses. Current Atherosclerosis Reports, 2007, 9, 238-243.	4.8	47
219	FOXO3a Turns the Tumor Necrosis Factor Receptor Signaling Towards Apoptosis Through Reciprocal Regulation of c-Jun N-Terminal Kinase and NF-κB. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 112-120.	2.4	47
220	lncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. Journal of Cell Biology, 2017, 216, 3497-3507.	5.2	47
221	Obesity and Pulmonary Arterial Hypertension: Is Adiponectin the Molecular Link between these Conditions?. Pulmonary Circulation, 2011, 1, 440-447.	1.7	46
222	Identification of Follistatin-Like 1 by Expression Cloning as an Activator of the Growth Differentiation Factor 15 Gene and a Prognostic Biomarker in Acute Coronary Syndrome. Clinical Chemistry, 2012, 58, 1233-1241.	3.2	46
223	Cardiac Myocyte-Derived Follistatin-Like 1 Prevents Renal Injury in a Subtotal Nephrectomy Model. Journal of the American Society of Nephrology: JASN, 2015, 26, 636-646.	6.1	46
224	Natural and synthetic DNA elements with the CArG motif differ in expression and protein-binding properties Molecular and Cellular Biology, 1991, 11, 6296-6305.	2.3	45
225	Adenovirus-mediated delivery of the Gax transcription factor to rat carotid arteries inhibits smooth muscle proliferation and induces apoptosis. Gene Therapy, 1999, 6, 758-763.	4.5	44
226	Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Therapy, 2000, 7, 1353-1361.	4.5	43
227	Myogenic Akt signaling upregulates the utrophin–glycoprotein complex and promotes sarcolemma stability in muscular dystrophy. Human Molecular Genetics, 2009, 18, 318-327.	2.9	42
228	Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2009, 47, 664-675.	1.9	42
229	Clonal Hematopoiesis and Its Impact on Cardiovascular Disease. Circulation Journal, 2018, 83, 2-11.	1.6	42
230	The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene <i>Ppm1d</i> Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circulation Research, 2021, 129, 684-698.	4.5	42
231	A recombinant defective adenoviral agent expressing anti-bcl-2 ribozyme promotes apoptosis of bcl-2-expressing human prostate cancer cells., 1999, 82, 846-852.		41
232	Regulation of cdk2 Activity in Endothelial Cells That Are Inhibited From Growth by Cell Contact. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 629-635.	2.4	41
233	\hat{l}^2 -Amyloid Peptide Expression Is Sufficient for Myotube Death: Implications for Human Inclusion Body Myopathy. Molecular and Cellular Neurosciences, 2001, 17, 793-810.	2.2	41
234	Forkhead Factor, FOXO3a, Induces Apoptosis of Endothelial Cells Through Activation of Matrix Metalloproteinases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 302-308.	2.4	41

#	Article	IF	Citations
235	Adiponectin Receptor Signaling on Dendritic Cells Blunts Antitumor Immunity. Cancer Research, 2014, 74, 5711-5722.	0.9	41
236	Phosphorylation of cardiac protein kinase B is regulated by palmitate. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1056-H1064.	3.2	40
237	Myocardial expression of FOXO3a–Atroginâ€1 pathway in human heart failure. European Journal of Heart Failure, 2010, 12, 1290-1296.	7.1	40
238	Insulin-like 6 Is Induced by Muscle Injury and Functions as a Regenerative Factor. Journal of Biological Chemistry, 2010, 285, 36060-36069.	3.4	39
239	Regulation of <i>Gax</i> Homeobox Gene Transcription by a Combination of Positive Factors Including Myocyte-Specific Enhancer Factor 2. Molecular and Cellular Biology, 1995, 15, 4272-4281.	2.3	38
240	LKB1 Deficiency in Tie2-Cre-expressing Cells Impairs Ischemia-induced Angiogenesis. Journal of Biological Chemistry, 2010, 285, 22291-22298.	3.4	38
241	Cardiac Myocyte-specific Ablation of Follistatin-like 3 Attenuates Stress-induced Myocardial Hypertrophy. Journal of Biological Chemistry, 2011, 286, 9840-9848.	3.4	37
242	TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. JCI Insight, 2021, 6, .	5.0	37
243	Endothelial Cell Overexpression of Fas Ligand Attenuates Ischemia-Reperfusion Injury in the Heart. Journal of Biological Chemistry, 2003, 278, 15185-15191.	3.4	36
244	Akt1–Mediated Skeletal Muscle Growth Attenuates Cardiac Dysfunction and Remodeling After Experimental Myocardial Infarction. Circulation: Heart Failure, 2012, 5, 116-125.	3.9	36
245	Acute and Chronic Increases of Circulating FSTL1 Normalize Energy Substrate Metabolism in Pacing-Induced Heart Failure. Circulation: Heart Failure, 2018, 11, e004486.	3.9	36
246	Activation of Akt2 Inhibits anoikis and apoptosis induced by myogenic differentiation. Cell Death and Differentiation, 2001, 8, 1207-1212.	11.2	35
247	Follistatin-Like 3 Mediates Paracrine Fibroblast Activation by Cardiomyocytes. Journal of Cardiovascular Translational Research, 2012, 5, 814-826.	2.4	35
248	Divergent Roles for Adiponectin Receptor 1 (AdipoR1) and AdipoR2 in Mediating Revascularization and Metabolic Dysfunction in Vivo. Journal of Biological Chemistry, 2014, 289, 16200-16213.	3.4	35
249	Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis. Biochemical Journal, 2010, 426, 85-90.	3.7	34
250	Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. Scientific Reports, 2017, 7, 17326.	3.3	34
251	Self-reactive CD4+ IL-3+ T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. Journal of Experimental Medicine, 2019, 216, 369-383.	8.5	34
252	Clonal Hematopoiesis: AÂNewÂStepÂLinking Inflammation toÂHeartÂFailure. JACC Basic To Translational Science, 2020, 5, 196-207.	4.1	33

#	Article	IF	CITATIONS
253	miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy. PLoS ONE, 2016, 11, e0151515.	2.5	33
254	Embryonic Expression of the Gax Homeodomain Protein in Cardiac, Smooth, and Skeletal Muscle. Circulation Research, 1997, 80, 452-462.	4.5	32
255	WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A ₁₆₅ b in obese humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H200-H206.	3.2	30
256	Homeobox transcription factor regulation in the cardiovascular system. Trends in Cardiovascular Medicine, 1993, 3, 184-190.	4.9	29
257	Fas Ligand-deficient Mice Display Enhanced Leukocyte Infiltration and Intima Hyperplasia in Flow-restricted Vessels. Journal of Molecular and Cellular Cardiology, 2000, 32, 1395-1400.	1.9	29
258	Endothelial Overexpression of Fas Ligand Decreases Atherosclerosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1466-1473.	2.4	29
259	Metabolomic Analysis of Akt1-Mediated Muscle Hypertrophy in Models of Diet-Induced Obesity and Age-Related Fat Accumulation. Journal of Proteome Research, 2015, 14, 342-352.	3.7	29
260	RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of regenerative pathways and changes in the muscle secretome. BMC Genomics, 2017, 18, 181.	2.8	29
261	A Competitive Mechanism of CArG Element Regulation by YY1 and SRF: Implications for Assessment of Phox1/MHox Transcription Factor Interactions at CArG Elements. DNA and Cell Biology, 1997, 16, 653-661.	1.9	28
262	Negative Regulation of Inflammation by Fas Ligand Expression on the Vascular Endothelium. Trends in Cardiovascular Medicine, 1999, 9, 34-41.	4.9	28
263	Death Receptor Induced Apoptosis. Hypertension, 2004, 43, 1168-1170.	2.7	28
264	Targeting adiponectin for cardioprotection. Expert Opinion on Therapeutic Targets, 2006, 10, 573-581.	3.4	28
265	WNT5A-JNK regulation of vascular insulin resistance in human obesity. Vascular Medicine, 2016, 21, 489-496.	1.5	28
266	Mitogen-responsive nuclear factors that mediate growth control signals in vascular myocytes. Cardiovascular Research, 1995, 30, 585-592.	3.8	26
267	Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1639-H1645.	3.2	26
268	Increased Akt-mTOR Signaling in Lung Epithelium Is Associated with Respiratory Distress Syndrome in Mice. Molecular and Cellular Biology, 2011, 31, 1054-1065.	2.3	26
269	Determinants of Adiponectin Levels in Patients With Chronic Systolic Heart Failure. American Journal of Cardiology, 2010, 105, 1147-1152.	1.6	25
270	Short-Term Akt Activation in Cardiac Muscle Cells Improves Contractile Function in Failing Hearts. American Journal of Pathology, 2012, 181, 1969-1976.	3.8	25

#	Article	IF	CITATIONS
271	Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiation Research, 2017, 188, 191-203.	1.5	25
272	Effects of Poloxamer 407 on Transfection Time and Percutaneous Adenovirus-Mediated Gene Transfer in Native and Stented Vessels. Human Gene Therapy, 1998, 9, 1013-1024.	2.7	24
273	Expression of Wild-Type and Noncleavable Fas Ligand by Tetracycline-Regulated Adenoviral Vectors to Limit Intimal Hyperplasia in Vascular Lesions. Human Gene Therapy, 2000, 11, 1625-1635.	2.7	24
274	Cellâ€Free Mitochondrial DNA as a Potential Biomarker for Astronauts' Health. Journal of the American Heart Association, 2021, 10, e022055.	3.7	22
275	Early Cell Loss after Angioplasty Results in a Disproportionate Decrease in Percutaneous Gene Transfer to the Vessel Wall. Human Gene Therapy, 1999, 10, 711-721.	2.7	21
276	Molecular Cloning and Localization of the Human GAX Gene to 7p21. Genomics, 1994, 24, 535-540.	2.9	20
277	Adiponectin attenuates abdominal aortic aneurysm formation in hyperlipidemic mice. Atherosclerosis, 2014, 235, 339-346.	0.8	19
278	C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury. Journal of Biological Chemistry, 2015, 290, 29642-29651.	3.4	19
279	ï‰-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin. Lipids in Health and Disease, 2010, 9, 95.	3.0	18
280	Perivascular Adipose Tissue Inflammation in Ischemic Heart Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1239-1250.	2.4	18
281	Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2. Journal of Molecular and Cellular Cardiology, 2010, 49, 196-209.	1.9	17
282	Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis. Arthritis Research and Therapy, 2017, 19, 166.	3.5	17
283	Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Human Molecular Genetics, 2014, 23, 3681-3694.	2.9	16
284	Relaxin Family Member Insulin‣ike Peptide 6 Ameliorates Cardiac Fibrosis and Prevents Cardiac Remodeling in Murine Heart Failure Models. Journal of the American Heart Association, 2018, 7, .	3.7	16
285	The Pro- and Antiangiogenic Effects of Statins. Seminars in Vascular Medicine, 2004, 4, 395-400.	2.1	15
286	Angiogenic-regulatory network revealed by molecular profiling heart tissue following Akt1 induction in endothelial cells. Angiogenesis, 2008, 11, 289-299.	7.2	15
287	Foxo/Atrogin induction in human and experimental myositis. Neurobiology of Disease, 2012, 46, 463-475.	4.4	15
288	What can adiponectin say about left ventricular function?. Heart, 2010, 96, 331-332.	2.9	14

#	Article	IF	CITATIONS
289	TNF-TNFR2/p75 Signaling Inhibits Early and Increases Delayed Nontargeted Effects in Bone Marrow-derived Endothelial Progenitor Cells. Journal of Biological Chemistry, 2014, 289, 14178-14193.	3.4	14
290	Angiotensin type I receptor blockade in conjunction with enhanced Akt activation restores coronary collateral growth in the metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1938-H1949.	3.2	13
291	Somatic mosaicism: implications for the cardiovascular system. European Heart Journal, 2020, 41, 2904-2907.	2.2	13
292	The injury-induced myokine insulin-like 6 is protective in experimental autoimmune myositis. Skeletal Muscle, 2014, 4, 16.	4.2	12
293	Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease Models. Journal of Visualized Experiments, 2019, , .	0.3	12
294	Murine models of clonal haematopoiesis to assess mechanisms of cardiovascular disease. Cardiovascular Research, 2022, 118, 1413-1432.	3.8	12
295	Cyclosporine Downregulates Fas Ligand Expression on Vascular Endothelial Cells: Implication for Accelerated Vasculopathy by Immunosuppressive Therapy. Biochemical and Biophysical Research Communications, 1999, 263, 430-432.	2.1	11
296	Genetic and Pharmacological Modulation of Akt1 for Improving Ovarian Graft Revascularization in a Mouse Model1. Biology of Reproduction, 2016, 94, 14.	2.7	11
297	The role of clonal haematopoiesis in cardiovascular diseases: epidemiology and experimental studies. Journal of Internal Medicine, 2020, 288, 507-517.	6.0	10
298	Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. Journal of Visualized Experiments, $2021, \ldots$	0.3	10
299	Cloning and sequence analysis of homeobox transcription factor cDNAs with an inosine-containing probe. BioTechniques, 1994, 16, 856-8, 860-2, 865.	1.8	9
300	Hematopoiesis Lineage Tree Uprooted: Every Cell Is a Rainbow. Developmental Cell, 2017, 41, 7-9.	7.0	8
301	Isolation of Highly Purified and Viable Retinal Endothelial Cells. Journal of Vascular Research, 2021, 58, 49-57.	1.4	8
302	Potential of adiponectin as a cardioprotective agent. Future Cardiology, 2007, 3, 647-656.	1.2	7
303	Nitroxideâ€enhanced MRI of cardiovascular oxidative stress. NMR in Biomedicine, 2020, 33, e4359.	2.8	7
304	Genetics of age-related clonal hematopoiesis and atherosclerotic cardiovascular disease. Current Opinion in Cardiology, 2020, 35, 219-225.	1.8	7
305	Clonal haematopoiesis and cardiovascular disease: how low can you go?. European Heart Journal, 2021, 42, 266-268.	2.2	7
306	Importance of clonal hematopoiesis in heart failure. Trends in Cardiovascular Medicine, 2022, 32, 198-203.	4.9	7

#	Article	IF	Citations
307	Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts. Frontiers in Genetics, 2021, 12, 812188.	2.3	7
308	Vascular remodeling mediated by Angptl2 produced from perivascular adipose tissue. Journal of Molecular and Cellular Cardiology, 2013, 59, 176-178.	1.9	6
309	Space flight associated changes in astronauts' plasmaâ€derived small extracellular vesicle microRNA: Biomarker identification. Clinical and Translational Medicine, 2022, 12, .	4.0	6
310	Lipidomic analysis of the liver identifies changes of major and minor lipid species in adiponectin deficient mice. Experimental and Molecular Pathology, 2013, 94, 412-417.	2.1	5
311	Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge. Journal of the American Heart Association, 2016, 5, .	3.7	5
312	Growth-arrest homeobox gene Gax: a molecular strategy to prevent arterial restenosis. Swiss Medical Weekly, 1996, 126, 1721-6.	1.6	5
313	Gene therapy for restenosis. Current Cardiology Reports, 2000, 2, 13-23.	2.9	4
314	The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. Journal of the American Heart Association, 2021, 10, e019904.	3.7	4
315	A Single-Cell Analysis of DNMT3A-Mediated Clonal Hematopoiesis in Heart Failure. Circulation Research, 2021, 128, 229-231.	4.5	4
316	Hematopoietic JAK2V617F-mediated clonal hematopoiesis: AlM2 understand mechanisms of atherogenesis. , 2021, 1, .		4
317	Proteome Dynamics and Bioinformatics Reveal Major Alterations in the Turnover Rate of Functionally Related Cardiac and Plasma Proteins in a Dog Model of Congestive Heart Failure. Journal of Cardiac Failure, 2022, 28, 588-600.	1.7	4
318	Prospects for intravascular gene therapy. Journal of Clinical Apheresis, 1997, 12, 140-145.	1.3	3
319	Application of ion-senstitive field effect transistors for measuring glial cell K+ transport. , $2016, , .$		3
320	Clonal Hematopoiesis Analyses in Clinical, Epidemiologic, and Genetic Aging Studies to Unravel Underlying Mechanisms of Age-Related Dysfunction in Humans. Frontiers in Aging, 2022, 3, .	2.6	3
321	A recombinant defective adenoviral agent expressing antiâ€bclâ€2 ribozyme promotes apoptosis of bclâ€2â€expressing human prostate cancer cells. International Journal of Cancer, 1999, 82, 846-852.	5.1	2
322	Forkhead Factor, FOXO3a, Induces Apoptosis of Endothelial Cells Through Activation of Matrix Metalloproteinases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 302-308.	2.4	2
323	Cardioprotective Actions of Adiponectin. High Blood Pressure and Cardiovascular Prevention, 2007, 14, 69-73.	2.2	1
324	Adipokines in inflammation and metabolic disease. , 0, .		1

#	Article	IF	CITATIONS
325	Regulation of Vascular Smooth Muscle Differentiation and Cell Cycle. , 1999, , 429-443.		1
326	Employing the CRISPR-Cas System for Clonal Hematopoiesis Research. International Journal of Physical Medicine $\&$ Rehabilitation, 2021, 9, .	0.5	1
327	Therapy-Related Clonal Hematopoiesis. Heart Failure Clinics, 2022, 18, 349-359.	2.1	1
328	Regulation of Angiogenesis and Vascular Remodeling by Endothelial Akt Signaling., 0,, 729-736.		0
329	5212Impaired function of brown adipose tissue is involved in the pathologies of pressure overload-induced heart failure. European Heart Journal, 2018, 39, .	2.2	0
330	P1613Brown adipose tissue dysfunction has a critical role for the development of heart failure in murine pressure overload model. European Heart Journal, 2019, 40, .	2.2	0
331	Isolation of Murine Retinal Endothelial Cells for Next-Generation Sequencing. Journal of Visualized Experiments, 2021, , .	0.3	0
332	Abstract 134: Low Dose Particle Radiation Affects Long-Term Survival of Bone Marrow Progenitor Cell Populations. Circulation Research, 2014, 115, .	4. 5	0
333	Somatic mutations that contribute to clonal hematopoiesis and cardiovascular disease risk: New mechanisms, new pharmacological targets. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY4-1.	0.0	0
334	Contribution of Circulating Progenitor Cells to Vascular Repair and Lesion Formation., 2007, , 185-197.		0