Robert O'Hagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235303/publications.pdf

Version: 2024-02-01

759233 839539 1,330 19 12 18 citations h-index g-index papers 23 23 23 1344 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fixation and Immunostaining of Endogenous Proteins or Post-translational Modifications in Caenorhabditis elegans. Bio-protocol, 2021, 11, e4172.	0.4	O
2	CCP1, a Tubulin Deglutamylase, Increases Survival of Rodent Spinal Cord Neurons following Glutamate-Induced Excitotoxicity. ENeuro, 2021, 8, ENEURO.0431-20.2021.	1.9	7
3	Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function. PLoS Genetics, 2020, 16, e1009052.	3.5	15
4	Glutamylation Regulates Transport, Specializes Function, and Sculpts the Structure of Cilia. Current Biology, 2017, 27, 3430-3441.e6.	3.9	67
5	<i>Caenorhabditis elegans</i> paraoxonase-like proteins control the functional expression of DEG/ENaC mechanosensory proteins. Molecular Biology of the Cell, 2016, 27, 1272-1285.	2.1	27
6	The tubulin repertoire of <i>Caenorhabditis elegans</i> i>sensory neurons and its context‑dependent role in process outgrowth. Molecular Biology of the Cell, 2016, 27, 3717-3728.	2.1	47
7	Kymographic Analysis of Transport in an Individual Neuronal Sensory Cilium in Caenorhabditis elegans. Methods in Molecular Biology, 2016, 1454, 107-122.	0.9	3
8	MEC-10 and MEC-19 Reduce the Neurotoxicity of the MEC-4(d) DEG/ENaC Channel in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2016, 6, 1121-1130.	1.8	6
9	A motor relay on ciliary tracks. Nature Cell Biology, 2015, 17, 1517-1519.	10.3	2
10	Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2014, 33, 25-33.	5.0	28
11	Regulation of tubulin glutamylation plays cell-specific roles in the function and stability of sensory cilia. Worm, 2012, 1, 155-159.	1.0	14
12	The Tubulin Deglutamylase CCPP-1 Regulates the Function and Stability of Sensory Cilia in C.Âelegans. Current Biology, 2011, 21, 1685-1694.	3.9	99
13	The DEG/ENaC Protein MEC-10 Regulates the Transduction Channel Complex in <i>Caenorhabditis elegans</i> Touch Receptor Neurons. Journal of Neuroscience, 2011, 31, 12695-12704.	3.6	75
14	Phylogenetic conservation of the cell-type-specific Lan3-2 glycoepitope in Caenorhabditis elegans. Development Genes and Evolution, 2010, 220, 77-87.	0.9	1
15	The Multipurpose 15-Protofilament Microtubules in C. elegans Have Specific Roles in Mechanosensation. Current Biology, 2009, 19, 1362-1367.	3.9	72
16	The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neuroscience, 2005, 8, 43-50.	14.8	457
17	Mechanosensation in Caenorhabditis elegans. International Review of Neurobiology, 2005, 69, 169-203.	2.0	35
18	Vocal communication between male Xenopus laevis. Animal Behaviour, 2004, 67, 353-365.	1.9	78

#	Article	IF	CITATIONS
19	MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature, 2002, 415, 1039-1042.	27.8	294