Min Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/123412/publications.pdf

Version: 2024-02-01

247 papers 20,517 citations

81 h-index 131 g-index

257 all docs

257 docs citations

times ranked

257

20300 citing authors

#	Article	IF	CITATIONS
1	Metal–Support Synergistic Catalysis in Pt/MoO _{3–<i>x</i>} Nanorods toward Ammonia Borane Hydrolysis with Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2022, 14, 5275-5286.	4.0	44
2	Structural Design and Performance of Electrocatalysts for Carbon Dioxide Reduction: A Review. Acta Chimica Sinica, 2022, 80, 199.	0.5	3
3	Precise Control over Local Atomic Structures in Ni–Mo Bimetallic Alloys for the Hydrodeoxygenation Reaction: A Combination between Density Functional Theory and Microkinetic Modeling. Journal of Physical Chemistry C, 2022, 126, 4319-4328.	1.5	5
4	Synergetic effect of Cu0 â^'Cu+ derived from layered double hydroxides toward catalytic transfer hydrogenation reaction. Applied Catalysis B: Environmental, 2022, 314, 121515.	10.8	51
5	Machine-Learning-Assisted Catalytic Performance Predictions of Single-Atom Alloys for Acetylene Semihydrogenation. ACS Applied Materials & Semihydrogenation. ACS Applied Materials & Semihydrogenation. ACS Applied Materials & Semihydrogenation.	4.0	9
6	Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13 , .	5.8	68
7	ZrO2-x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation. Applied Catalysis B: Environmental, 2021, 280, 119406.	10.8	65
8	Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural. Applied Catalysis B: Environmental, 2021, 282, 119569.	10.8	92
9	Confinement Synthesis Based on Layered Double Hydroxides: A New Strategy to Construct Singleâ€Atomâ€Containing Integrated Electrodes. Advanced Functional Materials, 2021, 31, 2008064.	7.8	43
10	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 7382-7388.	7.2	137
11	A pH-responsive ultrathin Cu-based nanoplatform for specific photothermal and chemodynamic synergistic therapy. Chemical Science, 2021, 12, 2594-2603.	3.7	78
12	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2021, 133, 7458-7464.	1.6	25
13	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	5.5	46
14	Boosting Areal Capacitance and Energy Density of a Flexible Supercapacitor Based on High-Mass-Loading Layered Double Hydroxides. ACS Applied Energy Materials, 2021, 4, 6302-6309.	2.5	7
15	Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy. Biomaterials, 2021, 273, 120807.	5.7	42
16	MoO <i>_x</i> -Decorated Co-Based Catalysts toward the Hydrodeoxygenation Reaction of Biomass-Derived Platform Molecules. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31799-31807.	4.0	26
17	Water-Gas-Shift Reaction on Au/TiO _{2â€"<i>x</i>} Catalysts with Various TiO ₂ Crystalline Phases: A Theoretical and Experimental Study. Journal of Physical Chemistry C, 2021, 125, 20360-20372.	1.5	11
18	Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Applied Catalysis B: Environmental, 2021, 295, 120290.	10.8	52

#	Article	IF	CITATIONS
19	Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation. Applied Catalysis B: Environmental, 2021, 299, 120669.	10.8	83
20	Oxygen binding energy of doped metal: a shortcut to efficient Ni-based bimetallic catalysts for the hydrodeoxygenation reaction. Catalysis Science and Technology, 2021, 11, 4376-4386.	2.1	10
21	Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics, 2021, 11, 3278-3300.	4.6	107
22	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	10.2	123
23	Recent advancements in twoâ€dimensional nanomaterials for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1596.	3.3	32
24	Layered double hydroxide nanosheets: towards ultrasensitive tumor microenvironment responsive synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 1445-1455.	2.9	35
25	The catalytic mechanism of the Au@TiO _{2â^'x} /ZnO catalyst towards a low-temperature water-gas shift reaction. Catalysis Science and Technology, 2020, 10, 768-775.	2.1	9
26	Ultralongâ€Life Chloride Ion Batteries Achieved by the Synergistic Contribution of Intralayer Metals in Layered Double Hydroxides. Advanced Functional Materials, 2020, 30, 1907448.	7.8	47
27	Intermetallic compound catalysts: synthetic scheme, structure characterization and catalytic application. Journal of Materials Chemistry A, 2020, 8, 2207-2221.	5.2	63
28	An atomic-confined-space separator for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 1896-1903.	5.2	41
29	Interfacial Fe5C2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols. Nature Communications, 2020, 11, 61.	5.8	78
30	Charge-separated metal-couple-site in NiZn alloy catalysts towards furfural hydrodeoxygenation reaction. Journal of Catalysis, 2020, 392, 69-79.	3.1	59
31	Multicomponent Transition Metal Dichalcogenide Nanosheets for Imagingâ€Guided Photothermal and Chemodynamic Therapy. Advanced Science, 2020, 7, 2000272.	5.6	86
32	Ultrathin Transition Metal Chalcogenide Nanosheets Synthesized <i>via</i> Topotactic Transformation for Effective Cancer Theranostics. ACS Applied Materials & Topotactic	4.0	21
33	Ptln Alloy Catalysts toward Selective Hydrogenolysis of Glycerol to 1,2-Propanediol. Industrial & Engineering Chemistry Research, 2020, 59, 12999-13006.	1.8	22
34	Highly dispersed nano-enzyme triggered intracellular catalytic reaction toward cancer specific therapy. Biomaterials, 2020, 258, 120257.	5.7	63
35	Catalytic Conversion Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol and 2-Methylfuran at Terrace, Step, and Corner Sites on Ni. ACS Catalysis, 2020, 10, 7240-7249.	5 . 5	31
36	NiFe saponite as a new anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 6539-6545.	5.2	9

#	Article	IF	Citations
37	The synthesis of a DHAD/ZnAlTi-LDH composite with advanced UV blocking and antibacterial activity for skin protection. RSC Advances, 2020, 10, 9786-9790.	1.7	14
38	Geometric effect promoted hydrotalcites catalysts towards aldol condensation reaction. Chinese Journal of Catalysis, 2020, 41, 1279-1287.	6.9	20
39	DFT Study on the Mechanism of the Water Gas Shift Reaction Over Ni _{<i>x</i>} P _{<i>y</i>} Catalysts: The Role of P. Journal of Physical Chemistry C, 2020, 124, 6598-6610.	1.5	18
40	Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne. Nature Communications, 2020, 11, 3324.	5.8	80
41	NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277, 119273.	10.8	57
42	Magnesium-based layered double hydroxide nanosheets: a new bone repair material with unprecedented osteogenic differentiation performance. Nanoscale, 2020, 12, 19075-19082.	2.8	20
43	A new family of rechargeable batteries based on halide ions shuttling. Chemical Engineering Journal, 2020, 389, 124376.	6.6	22
44	Application of Zero-Dimensional Nanomaterials in Biosensing. Frontiers in Chemistry, 2020, 8, 320.	1.8	141
45	Charge-Mediated Au+â^'Oxygen Vacancy towards Glycerol Oxidation with Largely Improved Catalytic Performance. Applied Catalysis A: General, 2020, 598, 117558.	2.2	13
46	CoFe–Cl Layered Double Hydroxide: A New Cathode Material for Highâ€Performance Chloride Ion Batteries. Advanced Functional Materials, 2019, 29, 1900983.	7.8	83
47	Singleâ€Atomicâ€Co Electrocatalysts with Selfâ€Supported Architecture toward Oxygenâ€Involved Reaction. Advanced Functional Materials, 2019, 29, 1906477.	7.8	91
48	Polysulfide Confinement and Highly Efficient Conversion on Hierarchical Mesoporous Carbon Nanosheets for Li–S Batteries. Advanced Energy Materials, 2019, 9, 1901935.	10.2	93
49	Two-dimensional nanomaterials: fascinating materials in biomedical field. Science Bulletin, 2019, 64, 1707-1727.	4.3	171
50	Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature. Science Bulletin, 2019, 64, 1764-1772.	4.3	27
51	The Periodic Table as a Guide to the Construction and Properties of Layered Double Hydroxides. Structure and Bonding, 2019, , 89-120.	1.0	12
52	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie, 2019, 131, 4002-4006.	1.6	13
53	Activeâ€Oxygenâ€Enhanced Homogeneous Nucleation of Lithium Metal on Ultrathin Layered Double Hydroxide. Angewandte Chemie - International Edition, 2019, 58, 3962-3966.	7. 2	44
54	Theoretical study on the reaction mechanism and selectivity of acetylene semi-hydrogenation on Ni–Sn intermetallic catalysts. Physical Chemistry Chemical Physics, 2019, 21, 1384-1392.	1.3	10

#	Article	IF	Citations
55	The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chemistry, 2019, 21, 5352-5362.	4.6	92
56	Integrated Nanostructural Electrodes Based on Layered Double Hydroxides. Energy and Environmental Materials, 2019, 2, 158-171.	7.3	46
57	Pillaring-Effect Induced Ultrahigh-Rate Pseudocapacitive Energy Storage Based on Layered Double Hydroxide Nanoplate Arrays. Industrial & Engineering Chemistry Research, 2019, 58, 11954-11963.	1.8	5
58	Discovery of a new intercalation-type anode for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 15371-15377.	5.2	28
59	Mass-loading independent electrocatalyst with high performance for oxygen reduction reaction and Zn-air battery based on Co-N-codoped carbon nanotube assembled microspheres. Chemical Engineering Journal, 2019, 373, 734-743.	6.6	40
60	A Control over Hydrogenation Selectivity of Furfural via Tuning Exposed Facet of Ni Catalysts. ACS Catalysis, 2019, 9, 4226-4235.	5.5	149
61	Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acidâ´'base sites. Applied Catalysis B: Environmental, 2019, 248, 394-404.	10.8	109
62	Au ^{δâ^'} â€"O _v â€"Ti ³⁺ Interfacial Site: Catalytic Active Center toward Low-Temperature Water Gas Shift Reaction. ACS Catalysis, 2019, 9, 2707-2717.	5.5	153
63	Directed synthesis of SnO ₂ @BiVO ₄ /Co-Pi photoanode for highly efficient photoelectrochemical water splitting and ureaÂoxidation. Journal of Materials Chemistry A, 2019, 7, 6327-6336.	5.2	81
64	Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nature Communications, 2019, 10, 5812.	5.8	277
65	Mechanistic insights into artificial metalloenzymes towards imine reduction. Physical Chemistry Chemical Physics, 2019, 21, 23408-23417.	1.3	2
66	Recent advances for solid basic catalysts: Structure design and catalytic performance. Journal of Solid State Chemistry, 2019, 269, 184-194.	1.4	29
67	Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides. Acta Chimica Sinica, 2019, 77, 1129.	0.5	11
68	Hydrotalcite monolayer toward high performance synergistic dual-modal imaging and cancer therapy. Biomaterials, 2018, 165, 14-24.	5.7	39
69	The reaction mechanism and selectivity of acetylene hydrogenation over Ni–Ga intermetallic compound catalysts: a density functional theory study. Dalton Transactions, 2018, 47, 4198-4208.	1.6	38
70	Ultrathin CoNiP@Layered Double Hydroxides Core–Shell Nanosheets Arrays for Largely Enhanced Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 623-631.	2.5	79
71	Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate. RSC Advances, 2018, 8, 4695-4702.	1.7	45
72	Ultrathin Mesoporous Co ₃ O ₄ Nanosheet Arrays for High-Performance Lithium-Ion Batteries. ACS Omega, 2018, 3, 1675-1683.	1.6	46

#	Article	IF	Citations
73	Bridge-type interface optimization on a dual-semiconductor heterostructure toward high performance overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7871-7876.	5.2	23
74	Monolayer Nanosheets with an Extremely High Drug Loading toward Controlled Delivery and Cancer Theranostics. Advanced Materials, 2018, 30, e1707389.	11.1	142
75	Fabrication of (Ni,Co) _{0.85} Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7585-7591.	5.2	118
76	Metal-acid site synergistic catalysis in Ru–ZrO ₂ toward selective hydrogenation of benzene to cyclohexene. Catalysis Science and Technology, 2018, 8, 236-243.	2.1	17
77	Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation. ACS Catalysis, 2018, 8, 656-664.	5.5	78
78	Layered double hydroxide monolayers for controlled loading and targeted delivery of anticancer drugs. Nano Research, 2018, 11, 195-205.	5.8	52
79	Selective Hydrogenation of Cinnamaldehyde over Co-Based Intermetallic Compounds Derived from Layered Double Hydroxides. ACS Catalysis, 2018, 8, 11749-11760.	5.5	106
80	Supported Ag Catalysts on Mg–Al Oxides toward Oxidant-Free Dehydrogenation Reaction of Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2018, 57, 15606-15612.	1.8	19
81	Atom-economical construction of carbon nanotube architectures for flexible supercapacitors with ultrahigh areal and volumetric capacities. Journal of Materials Chemistry A, 2018, 6, 21287-21294.	5.2	24
82	Layered Double Hydroxideâ€Based Catalysts: Recent Advances in Preparation, Structure, and Applications. Advanced Functional Materials, 2018, 28, 1802943.	7.8	317
83	A bottom-up synthesis of rare-earth-hydrotalcite monolayer nanosheets toward multimode imaging and synergetic therapy. Chemical Science, 2018, 9, 5630-5639.	3.7	51
84	An ultrathin photosensitizer for simultaneous fluorescence imaging and photodynamic therapy. Chemical Communications, 2018, 54, 5760-5763.	2.2	21
85	Ordered-Vacancy-Induced Cation Intercalation into Layered Double Hydroxides: A General Approach for High-Performance Supercapacitors. CheM, 2018, 4, 2168-2179.	5.8	105
86	Moisture-Permeable, Humidity-Enhanced Gas Barrier Films Based on Organic/Inorganic Multilayers. ACS Applied Materials & Discrete Samp; Interfaces, 2018, 10, 28130-28138.	4.0	28
87	Host-Guest Engineering of Layered Double Hydroxides towards Efficient Oxygen Evolution Reaction: Recent Advances and Perspectives. Catalysts, 2018, 8, 214.	1.6	21
88	Insights into Interfacial Synergistic Catalysis over Ni@TiO _{2–<i>x</i>} Catalyst toward Water–Gas Shift Reaction. Journal of the American Chemical Society, 2018, 140, 11241-11251.	6.6	208
89	Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nature Communications, 2018, 9, 2798.	5.8	231
90	A CaMnAl-hydrotalcite solid basic catalyst toward the aldol condensation reaction with a comparable level to liquid alkali catalysts. Green Chemistry, 2018, 20, 3071-3080.	4.6	35

#	Article	IF	CITATIONS
91	Hydroxide-ion-conductive gas barrier films based on layered double hydroxide/polysulfone multilayers. Chemical Communications, 2018, 54, 7778-7781.	2.2	15
92	Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Frontiers of Chemical Science and Engineering, 2018, 12, 537-554.	2.3	33
93	Hybrid films with excellent oxygen and water vapor barrier properties as efficient anticorrosive coatings. RSC Advances, 2018, 8, 21651-21657.	1.7	16
94	Confined Synthesis of Carbon Nitride in a Layered Host Matrix with Unprecedented Solid tate Quantum Yield and Stability. Advanced Materials, 2018, 30, 1704376.	11.1	86
95	Visible-light-driven overall water splitting with a largely-enhanced efficiency over a Cu2O@ZnCr-layered double hydroxide photocatalyst. Nano Energy, 2017, 32, 463-469.	8.2	92
96	A supramolecular material for dual-modal imaging and targeted cancer therapy. Talanta, 2017, 165, 297-303.	2.9	19
97	Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy, 2017, 33, 21-28.	8.2	130
98	Band Structure Engineering of Transition-Metal-Based Layered Double Hydroxides toward Photocatalytic Oxygen Evolution from Water: A Theoretical–Experimental Combination Study. Journal of Physical Chemistry C, 2017, 121, 2683-2695.	1.5	113
99	Electrochemiluminescence resonance energy transfer (ERET) towards trinitrotoluene sensor based on layer-by-layer assembly of luminol-layered double hydroxides and CdTe quantum dots. Journal of Materials Chemistry C, 2017, 5, 3473-3479.	2.7	39
100	Promoted Synergic Catalysis between Metal Ni and Acid–Base Sites toward Oxidant-Free Dehydrogenation of Alcohols. ACS Catalysis, 2017, 7, 2735-2743.	5.5	120
101	Layered double hydroxide bio-composites toward excellent systematic anticancer therapy. Journal of Materials Chemistry B, 2017, 5, 3212-3216.	2.9	20
102	Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37, 98-107.	8.2	129
103	Photoelectrochemical Catalysis toward Selective Anaerobic Oxidation of Alcohols. Chemistry - A European Journal, 2017, 23, 8142-8147.	1.7	35
104	Reduced titania@layered double hydroxide hybrid photoanodes for enhanced photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 11016-11025.	5.2	31
105	Hierarchical CoNiâ€Sulfide Nanosheet Arrays Derived from Layered Double Hydroxides toward Efficient Hydrazine Electrooxidation. Advanced Materials, 2017, 29, 1604080.	11.1	196
106	In situ synthesis of nitrogen-doped carbon dots in the interlayer region of a layered double hydroxide with tunable quantum yield. Journal of Materials Chemistry C, 2017, 5, 3536-3541.	2.7	39
107	Double-active site synergistic catalysis in Ru–TiO ₂ toward benzene hydrogenation to cyclohexene with largely enhanced selectivity. Catalysis Science and Technology, 2017, 7, 650-657.	2.1	28
108	Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy, 2017, 41, 408-416.	8.2	126

#	Article	IF	Citations
109	Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26, 1094-1106.	7.1	93
110	Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy, 2017, 41, 583-590.	8.2	207
111	TiO _{2–<i>x</i>} -Modified Ni Nanocatalyst with Tunable Metal–Support Interaction for Water–Gas Shift Reaction. ACS Catalysis, 2017, 7, 7600-7609.	5.5	268
112	Size Effect of Layered Double Hydroxide Platelets on the Crystallization Behavior of Isotactic Polypropylene. ACS Omega, 2017, 2, 4253-4260.	1.6	13
113	A switchable electrochromism and electrochemiluminescence bifunctional sensor based on the electro-triggered isomerization of spiropyran/layered double hydroxides. Chemical Communications, 2017, 53, 8862-8865.	2.2	32
114	DFTâ€Based Simulation and Experimental Validation of the Topotactic Transformation of MgAl Layered Double Hydroxides. ChemPhysChem, 2016, 17, 2754-2766.	1.0	30
115	Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. Journal of Materials Chemistry A, 2016, 4, 11516-11523.	5.2	104
116	TiO ₂ /graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy and Environmental Science, 2016, 9, 2633-2643.	15.6	442
117	A luminescent ultrathin film with reversible sensing toward pressure. Chemical Communications, 2016, 52, 4663-4666.	2.2	16
118	Surface-confined fluorescence enhancement of Au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging. Nanoscale, 2016, 8, 9815-9821.	2.8	39
119	Active Site Dependent Reaction Mechanism over Ru/CeO ₂ Catalyst toward CO ₂ Methanation. Journal of the American Chemical Society, 2016, 138, 6298-6305.	6.6	489
120	Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction. Nano Energy, 2016, 25, 100-109.	8.2	124
121	Ultrahigh-rate-capability of a layered double hydroxide supercapacitor based on a self-generated electrolyte reservoir. Journal of Materials Chemistry A, 2016, 4, 8421-8427.	5.2	61
122	The fabrication of oriented organic–inorganic ultrathin films with enhanced electrochromic properties. Journal of Materials Chemistry C, 2016, 4, 8284-8290.	2.7	17
123	Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33697-33703.	4.0	175
124	Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4, 12825-12832.	5.2	31
125	Layer-by-Layer Assembly of Carbon Dots-Based Ultrathin Films with Enhanced Quantum Yield and Temperature Sensing Performance. Chemistry of Materials, 2016, 28, 5426-5431.	3.2	42
126	Highly efficient metal-free electrocatalysts toward oxygen reduction derived from carbon nanotubes@polypyrrole core–shell hybrids. Journal of Materials Chemistry A, 2016, 4, 18008-18014.	5.2	25

#	Article	IF	CITATIONS
127	Multi-dimensional, light-controlled switch of fluorescence resonance energy transfer based on orderly assembly of OD dye@micro-micelles and 2D ultrathin-layered nanosheets. Nano Research, 2016, 9, 3828-3838.	5.8	17
128	Catalytic performance of layered double hydroxide nanosheets toward phenol hydroxylation. RSC Advances, 2016, 6, 105406-105411.	1.7	19
129	Directed Growth of Metalâ€Organic Frameworks and Their Derived Carbonâ€Based Network for Efficient Electrocatalytic Oxygen Reduction. Advanced Materials, 2016, 28, 2337-2344.	11.1	448
130	Ru-Cluster-Modified Ni Surface Defects toward Selective Bond Breaking between C â€" O and C â€" C. Chemistry of Materials, 2016, 28, 4751-4761.	3.2	37
131	Alkaline-assisted Ni nanocatalysts with largely enhanced low-temperature activity toward CO ₂ methanation. Catalysis Science and Technology, 2016, 6, 3976-3983.	2.1	56
132	A layered drug nanovehicle toward targeted cancer imaging and therapy. Journal of Materials Chemistry B, 2016, 4, 1331-1336.	2.9	35
133	Mesoporous graphene-layered double hydroxides free-standing films for enhanced flexible supercapacitors. Chemical Engineering Journal, 2016, 289, 85-92.	6.6	68
134	Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance. Journal of Materials Chemistry A, 2016, 4, 3907-3913.	5. 2	70
135	A targeted agent with intercalation structure for cancer near-infrared imaging and photothermal therapy. RSC Advances, 2016, 6, 16608-16614.	1.7	22
136	CeO ₂ -based heterogeneous catalysts toward catalytic conversion of CO ₂ . Journal of Materials Chemistry A, 2016, 4, 5773-5783.	5. 2	110
137	A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy, 2016, 20, 294-304.	8.2	300
138	Supercapacitors: Hierarchical Conducting Polymer@Clay Core-Shell Arrays for Flexible All-Solid-State Supercapacitor Devices (Small 29/2015). Small, 2015, 11, 3529-3529.	5 . 2	11
139	Tunable Selfâ€Assembled Micro/Nanostructures of Carboxylâ€Functionalized Squarylium Cyanine for Ammonia Sensing. Advanced Functional Materials, 2015, 25, 7442-7449.	7.8	37
140	Transparent, Ultrahighâ€Gasâ€Barrier Films with a Brick–Mortar–Sand Structure. Angewandte Chemie - International Edition, 2015, 54, 9673-9678.	7.2	54
141	Localization of Au Nanoclusters on Layered Double Hydroxides Nanosheets: Confinementâ€Induced Emission Enhancement and Temperatureâ€Responsive Luminescence. Advanced Functional Materials, 2015, 25, 5006-5015.	7.8	167
142	Remarkable oxygen barrier films based on a layered double hydroxide/chitosan hierarchical structure. Journal of Materials Chemistry A, 2015, 3, 12350-12356.	5. 2	41
143	Layered Double Hydroxide Materials: Assembly and Photofunctionality. Structure and Bonding, 2015, , 1-68.	1.0	17
144	Hierarchical Conducting Polymer@Clay Core-Shell Arrays for Flexible All-Solid-State Supercapacitor Devices. Small, 2015, 11, 3530-3538.	5 . 2	116

#	Article	IF	CITATIONS
145	Cuâ€Decorated Ru Catalysts Supported on Layered Double Hydroxides for Selective Benzene Hydrogenation to Cyclohexene. ChemCatChem, 2015, 7, 846-855.	1.8	26
146	Au nanoparticles sensitized ZnO nanorod@nanoplatelet coreâ€"shell arrays for enhanced photoelectrochemical water splitting. Nano Energy, 2015, 12, 231-239.	8.2	175
147	TiO ₂ @Layered Double Hydroxide Core–Shell Nanospheres with Largely Enhanced Photocatalytic Activity Toward O ₂ Generation. Advanced Functional Materials, 2015, 25, 2243-2249.	7.8	223
148	Theoretical and Experimental Study on M ^{II} M ^{III} -Layered Double Hydroxides as Efficient Photocatalysts toward Oxygen Evolution from Water. Journal of Physical Chemistry C, 2015, 119, 18823-18834.	1.5	170
149	A supramolecular nanovehicle toward systematic, targeted cancer and tumor therapy. Chemical Science, 2015, 6, 5511-5518.	3.7	26
150	Combined <i>In Situ</i> and <i>In Silico</i> Studies of Guest Intercalation into the Layered Double Hydroxide [LiAl ₂ (OH) ₆]XÂ- <i>y</i> H ₂ O. Journal of Physical Chemistry C, 2015, 119, 18729-18740.	1.5	4
151	Fabrication of host–guest UV-blocking materials by intercalation of fluorescent anions into layered double hydroxides. RSC Advances, 2015, 5, 23708-23714.	1.7	49
152	A Light-Triggered Switch Based on Spiropyran/Layered Double Hydroxide Ultrathin Films. Journal of Physical Chemistry C, 2015, 119, 7428-7435.	1.5	16
153	Surface enhanced Raman scattering based on Au nanoparticles/layered double hydroxide ultrathin films. Journal of Materials Chemistry C, 2015, 3, 5167-5174.	2.7	26
154	Molecularâ€Scale Hybridization of Clay Monolayers and Conducting Polymer for Thinâ€Film Supercapacitors. Advanced Functional Materials, 2015, 25, 2745-2753.	7.8	80
155	Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chemical Science, 2015, 6, 6624-6631.	3.7	378
156	Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chemical Communications, 2015, 51, 15880-15893.	2.2	361
157	Metal Phosphides Derived from Hydrotalcite Precursors toward the Selective Hydrogenation of Phenylacetylene. ACS Catalysis, 2015, 5, 5756-5765.	5.5	128
158	A 2D quantum dot-based electrochemiluminescence film sensor towards reversible temperature-sensitive response and nitrite detection. Journal of Materials Chemistry C, 2015, 3, 10099-10106.	2.7	45
159	Core–shell Cu@(CuCo-alloy)/Al ₂ O ₃ catalysts for the synthesis of higher alcohols from syngas. Green Chemistry, 2015, 17, 1525-1534.	4.6	93
160	A Supermolecular Photosensitizer with Excellent Anticancer Performance in Photodynamic Therapy. Advanced Functional Materials, 2014, 24, 3144-3151.	7.8	110
161	Hierarchical Nanowire Arrays Based on ZnO Coreâ^Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting. Advanced Functional Materials, 2014, 24, 580-586.	7.8	252
162	Nickel–Gallium Intermetallic Nanocrystal Catalysts in the Semihydrogenation of Phenylacetylene. ChemCatChem, 2014, 6, 824-831.	1.8	89

#	Article	IF	CITATIONS
163	Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors. Advanced Functional Materials, 2014, 24, 2938-2946.	7.8	646
164	Twoâ€Component Molecular Materials of 2,5â€Diphenyloxazole Exhibiting Tunable Ultraviolet/Blue Polarized Emission, Pumpâ€enhanced Luminescence, and Mechanochromic Response. Advanced Functional Materials, 2014, 24, 587-594.	7.8	190
165	Transparent, Flexible Films Based on Layered Double Hydroxide/Cellulose Acetate with Excellent Oxygen Barrier Property. Advanced Functional Materials, 2014, 24, 514-521.	7.8	101
166	Confined synthesis of ultrafine Ru–B amorphous alloy and its catalytic behavior toward selective hydrogenation of benzene. Journal of Materials Chemistry A, 2014, 2, 7570.	5.2	29
167	A Chiroptical Switch Based on DNA/Layered Double Hydroxide Ultrathin Films. Langmuir, 2014, 30, 12916-12922.	1.6	16
168	Catalytic behavior of supported Ru nanoparticles on the (101) and (001) facets of anatase TiO2. RSC Advances, 2014, 4, 10834.	1.7	49
169	Supramolecular Materials: Twoâ€Component Molecular Materials of 2,5â€Diphenyloxazole Exhibiting Tunable Ultraviolet/Blue Polarized Emission, Pumpâ€enhanced Luminescence, and Mechanochromic Response (Adv. Funct. Mater. 5/2014). Advanced Functional Materials, 2014, 24, 720-720.	7.8	1
170	Supported nickel–iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O. Green Chemistry, 2014, 16, 1560.	4.6	78
171	Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chemical Communications, 2014, 50, 14071-14081.	2.2	226
172	Hydrogenation mechanism of carbon dioxide and carbon monoxide on Ru(0001) surface: a density functional theory study. RSC Advances, 2014, 4, 30241.	1.7	69
173	Surfactant-free platinum nanocubes with greatly enhanced activity towards methanol/ethanol electrooxidation. RSC Advances, 2014, 4, 28832.	1.7	14
174	NiTi-Layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chemical Science, 2014, 5, 951-958.	3.7	250
175	A NiAl layered double hydroxide@carbon nanoparticles hybrid electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 1682-1685.	5.2	84
176	Humidity-triggered self-healing films with excellent oxygen barrier performance. Chemical Communications, 2014, 50, 7136.	2.2	55
177	Preparation of a ternary Pd–Rh–P amorphous alloy and its catalytic performance in selective hydrogenation of alkynes. Catalysis Science and Technology, 2014, 4, 1920-1924.	2.1	19
178	Layered Double Hydroxideâ€based Nanomaterials as Highly Efficient Catalysts and Adsorbents. Small, 2014, 10, 4469-4486.	5.2	363
179	A Structured Catalyst toward Mercaptan Sweetening with Largely Enhanced Synergistic Effect. Industrial & Description of the Property of the American Structure (1988) Industrial & Description of the Property	1.8	8
180	Intelligent display films with tunable color emission based on a supermolecular architecture. Journal of Materials Chemistry C, 2013, 1, 5654.	2.7	16

#	Article	IF	Citations
181	Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst. Catalysis Science and Technology, 2013, 3, 2627.	2.1	246
182	Ce-Promoted Rh/TiO2 Heterogeneous Catalysts Towards Ethanol Production from Syngas. Catalysis Letters, 2013, 143, 1247-1254.	1.4	26
183	Two-color polarized emission and angle-dependent luminescence based on layer-by-layer assembly of binary chromophores/layered double hydroxide thin films. New Journal of Chemistry, 2013, 37, 4110.	1.4	14
184	Hierarchical Layered Double Hydroxide Microspheres with Largely Enhanced Performance for Ethanol Electrooxidation. Advanced Functional Materials, 2013, 23, 3513-3518.	7.8	107
185	Flexible hierarchical nanocomposites based on MnO ₂ nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Advances, 2013, 3, 1045-1049.	1.7	75
186	Ni–In Intermetallic Nanocrystals as Efficient Catalysts toward Unsaturated Aldehydes Hydrogenation. Chemistry of Materials, 2013, 25, 3888-3896.	3.2	103
187	Visible-Light-Responsive Photocatalysts toward Water Oxidation Based on NiTi-Layered Double Hydroxide/Reduced Graphene Oxide Composite Materials. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10233-10239.	4.0	147
188	A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. Journal of Materials Chemistry A, 2013, 1, 5840.	5.2	130
189	Regular assembly of 9-fluorenone-2,7-dicarboxylate within layered double hydroxide and its solid-state photoluminescence: a combined experiment and computational study. RSC Advances, 2013, 3, 4303.	1.7	26
190	Synthesis of supported Ni@(RhNi-alloy) nanocomposites as an efficient catalyst towards hydrogen generation from N2H4BH3. Chemical Communications, 2013, 49, 9992.	2.2	61
191	Mechanochemical synthesis of a fluorenone-based metal organic framework with polarized fluorescence: an experimental and computational study. Journal of Materials Chemistry C, 2013, 1, 997-1004.	2.7	59
192	Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides. Catalysis Science and Technology, 2013, 3, 1324.	2.1	106
193	Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability. Journal of Materials Chemistry A, 2013, 1, 2461.	5.2	54
194	Organic–inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. Journal of Materials Chemistry C, 2013, 1, 4128.	2.7	86
195	Organic microbelt array based on hydrogen-bond architecture showing polarized fluorescence and two-photon emission. Journal of Materials Chemistry C, 2013, 1, 4138.	2.7	44
196	Hierarchical Structures Based on Functionalized Magnetic Cores and Layered Doubleâ€Hydroxide Shells: Concept, Controlled Synthesis, and Applications. Chemistry - A European Journal, 2013, 19, 4100-4108.	1.7	49
197	Binary Cu–Co catalysts derived from hydrotalcites with excellent activity and recyclability towards NH3BH3 dehydrogenation. Journal of Materials Chemistry A, 2013, 1, 5370.	5.2	60
198	Facile Fabrication of Highlyâ€Dispersed Nickel Nanoparticles with Largely Enhanced Electrocatalytic Activity. Electroanalysis, 2013, 25, 1594-1598.	1.5	12

#	Article	IF	CITATIONS
199	CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. Journal of Materials Chemistry A, 2013, 1, 8836.	5.2	218
200	Flexible and transparent free-standing films with enhanced magnetic and luminescent anisotropy. Journal of Materials Chemistry A, 2013, 1, 4786.	5.2	12
201	Layered double hydroxide-based catalysts: nanostructure design and catalytic performance. Chemical Communications, 2013, 49, 5912.	2.2	289
202	Synthesis and antimicrobial activity of ZnTi–layered double hydroxide nanosheets. Journal of Materials Chemistry B, 2013, 1, 5988.	2.9	56
203	A Surface Defect-Promoted Ni Nanocatalyst with Simultaneously Enhanced Activity and Stability. Chemistry of Materials, 2013, 25, 1040-1046.	3.2	184
204	Tunable/switchable one-dimensional photonic crystals based on a multilayer architecture of layered double hydroxides and titanium dioxide. RSC Advances, 2012, 2, 10488.	1.7	10
205	Fabrication of Hierarchical Layered Double Hydroxide Framework on Aluminum Foam as a Structured Adsorbent for Water Treatment. Industrial & Engineering Chemistry Research, 2012, 51, 285-291.	1.8	55
206	Preparation of Fe ₃ O ₄ @SiO ₂ @Layered Double Hydroxide Coreâ€"Shell Microspheres for Magnetic Separation of Proteins. Journal of the American Chemical Society, 2012, 134, 1071-1077.	6.6	720
207	Temperature-Controlled Electrochemical Switch Based on Layered Double Hydroxide/Poly(<i>N</i> -lsopropylacrylamide) Ultrathin Films Fabricated via Layer-by-Layer Assembly. Langmuir, 2012, 28, 9535-9542.	1.6	65
208	Valence Force Field for Layered Double Hydroxide Materials Based on the Parameterization of Octahedrally Coordinated Metal Cations. Journal of Physical Chemistry C, 2012, 116, 3421-3431.	1.5	38
209	A structured catalyst based on cobalt phthalocyanine/calcined Mg–Al hydrotalcite film for the oxidation of mercaptan. Green Chemistry, 2012, 14, 1909.	4.6	43
210	Modification of luminescent properties of a coumarin derivative by formation of multi-component crystals. CrystEngComm, 2012, 14, 5121.	1.3	59
211	Fabrication of Acid Violet 34/Nickel Hydroxide Ultrathin Film and Its Electrocatalytic Performance for Glucose. Electroanalysis, 2012, 24, 1192-1200.	1.5	5
212	CdTe Quantum Dots/Layered Double Hydroxide Ultrathin Films with Multicolor Light Emission via Layerâ€byâ€Layer Assembly. Advanced Functional Materials, 2012, 22, 4940-4948.	7.8	80
213	Fabrication of MMO–TiO2 one-dimensional photonic crystal and its application as a colorimetric sensor. Journal of Materials Chemistry, 2012, 22, 14001.	6.7	45
214	Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate. Chemical Communications, 2011, 47, 10797.	2.2	89
215	Patterned fluorescence films with reversible thermal response based on the host–guest superarchitecture. Journal of Materials Chemistry, 2011, 21, 11116.	6.7	19
216	Self-assembly of layered double hydroxide nanosheets/Au nanoparticles ultrathin films for enzyme-free electrocatalysis of glucose. Journal of Materials Chemistry, 2011, 21, 13926.	6.7	90

#	Article	IF	CITATIONS
217	Magnetic-field-assisted assembly of CoFe layered double hydroxide ultrathin films with enhanced electrochemical behavior and magnetic anisotropy. Chemical Communications, 2011, 47, 3171.	2.2	63
218	Fabrication of pyrenetetrasulfonate/layered double hydroxide ultrathin films and their application in fluorescence chemosensors. Journal of Materials Chemistry, 2011, 21, 6088.	6.7	31
219	Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors. Journal of Materials Chemistry, 2011, 21, 2126-2130.	6.7	87
220	Synergistic catalysis by polyoxometalate-intercalated layered double hydroxides: oximation of aromatic aldehydes with large enhancement of selectivity. Green Chemistry, 2011, 13, 384.	4.6	67
221	Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: experimental and theoretical perspectives. Journal of Materials Chemistry, 2011, 21, 13128.	6.7	91
222	Heterogeneous Transparent Ultrathin Films with Tunableâ€Color Luminescence Based on the Assembly of Photoactive Organic Molecules and Layered Double Hydroxides. Advanced Functional Materials, 2011, 21, 2497-2505.	7.8	106
223	MULTICOLOR LUMINESCENCE: Heterogeneous Transparent Ultrathin Films with Tunable-Color Luminescence Based on the Assembly of Photoactive Organic Molecules and Layered Double Hydroxides (Adv. Funct. Mater. 13/2011). Advanced Functional Materials, 2011, 21, 2496-2496.	7.8	2
224	Fabrication of an anionic polythiophene/layered double hydroxide ultrathin film showing red luminescence and reversible pH photoresponse. AICHE Journal, 2011, 57, 1926-1935.	1.8	16
225	Preparation of acrylic acid and AMPS cointercalated layered double hydroxide and its application for superabsorbent. Journal of Applied Polymer Science, 2011, 121, 1661-1668.	1.3	20
226	Reversibly Thermochromic, Fluorescent Ultrathin Films with a Supramolecular Architecture. Angewandte Chemie - International Edition, 2011, 50, 720-723.	7.2	212
227	Layered Host–Guest Materials with Reversible Piezochromic Luminescence. Angewandte Chemie - International Edition, 2011, 50, 7037-7040.	7.2	165
228	Layer-by-Layer Ultrathin Films of Azobenzene-Containing Polymer/Layered Double Hydroxides with Reversible Photoresponsive Behavior. Journal of Physical Chemistry B, 2010, 114, 5678-5685.	1.2	82
229	Photoresponsive thin films containing an azobenzene derivative intercalated with a layered double hydroxide. Science Bulletin, 2010, 55, 3894-3900.	1.7	1
230	Tris(8â€hydroxyquinolineâ€5â€sulfonate)aluminum Intercalated Mg–Al Layered Double Hydroxide with Blue Luminescence by Hydrothermal Synthesis. Advanced Functional Materials, 2010, 20, 2848-2856.	7.8	58
231	Optical pH Sensor with Rapid Response Based on a Fluoresceinâ€Intercalated Layered Double Hydroxide. Advanced Functional Materials, 2010, 20, 3856-3863.	7.8	114
232	Erasable Nanoporous Antireflection Coatings Based on the Reconstruction Effect of Layered Double Hydroxides. Angewandte Chemie - International Edition, 2010, 49, 2171-2174.	7.2	87
233	Layer-by-layer assembly of porphyrin/layered double hydroxide ultrathin film and its electrocatalytic behavior for H2O2. Electrochemistry Communications, 2010, 12, 1077-1080.	2.3	55
234	Tunable photoluminescence properties of fluorescein in a layered double hydroxide matrix and its application in sensors. Journal of Materials Chemistry, 2010, 20, 3901.	6.7	50

#	Article	IF	CITATIONS
235	Thin film of coumarin-3-carboxylate and surfactant co-intercalated layered double hydroxide with polarized photoluminescence: a joint experimental and molecular dynamics study. Journal of Materials Chemistry, 2010, 20, 5016.	6.7	44
236	ZnO Nanotubes Grown at Low Temperature Using Ga as Catalysts and Their Enhanced Photocatalytic Activities. Journal of Physical Chemistry C, 2009, 113, 10379-10383.	1.5	51
237	Preparation of Rh-TPPTS complex intercalated layered double hydroxide and influences of host and guest compositions on its catalytic performances in hydroformylation reaction. Science Bulletin, 2008, 53, 1329-1336.	4.3	7
238	Large oriented mesoporous self-supporting Ni–Al oxide films derived from layered double hydroxide precursors. Journal of Materials Chemistry, 2008, 18, 2666.	6.7	61
239	A Facile and Green Synthesis Route to Mesoporous Spinel-type Znâ^'Al Complex Oxide. Industrial & Engineering Chemistry Research, 2008, 47, 1495-1500.	1.8	27
240	Intraparticle diffusion of 1-phenyl-1, 2-ethanediol in layered double hydroxides. AICHE Journal, 2007, 53, 1591-1600.	1.8	19
241	Rhâ€TPPTS intercalated layered double hydroxides as hydroformylation catalyst. AICHE Journal, 2007, 53, 2916-2924.	1.8	31
242	Preparation and characterization of l-cystine and l-cysteine intercalated layered double hydroxides. Journal of Materials Science, 2007, 42, 2684-2689.	1.7	34
243	Studies on structure and electrochemical properties of pillared M–MnO2 (M=Ba2+, Sr2+, ZrO2+). Journal of Solid State Electrochemistry, 2007, 11, 1157-1162.	1.2	10
244	Study on the intercalation and interlayer oxidation transformation of l-cysteine in a confined region of layered double hydroxides. Journal of Materials Chemistry, 2006, 16, 2102.	6.7	43
245	Study on the Photochromism of Ni–Al Layered Double Hydroxides Containing Nitrate Anions. European Journal of Inorganic Chemistry, 2006, 2006, 2831-2838.	1.0	69
246	Study of the In Situ Postintercalative Polymerization of Metanilic Anions Intercalated in NiAl-Layered Double Hydroxides under a Nitrogen Atmosphere. European Journal of Inorganic Chemistry, 2006, 2006, 3442-3450.	1.0	22
247	Controlled polymerization of metanilic anion within the interlayer of NiAl layered double hydroxide. Clays and Clay Minerals, 2006, 54, 418-425.	0.6	6