
Hector Escriva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1234007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The nuclear receptor superfamily. Journal of Cell Science, 2003, 116, 585-586.	2.0	424
2	Ligand binding was acquired during evolution of nuclear receptors. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6803-6808.	7.1	369
3	Evolutionary Genomics of Nuclear Receptors: From Twenty-Five Ancestral Genes to Derived Endocrine Systems. Molecular Biology and Evolution, 2004, 21, 1923-1937.	8.9	319
4	Ligand binding and nuclear receptor evolution. BioEssays, 2000, 22, 717-727.	2.5	244
5	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	27.8	224
6	Euteleost Fish Genomes are Characterized by Expansion of Gene Families. Genome Research, 2001, 11, 781-788.	5.5	201
7	Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression. PLoS Genetics, 2007, 3, e188.	3.5	188
8	Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell, 2016, 166, 102-114.	28.9	170
9	The evolution of the nuclear receptor superfamily. Essays in Biochemistry, 2004, 40, 11-26.	4.7	169
10	Analysis of Lamprey and Hagfish Genes Reveals a Complex History of Gene Duplications During Early Vertebrate Evolution. Molecular Biology and Evolution, 2002, 19, 1440-1450.	8.9	168
11	Amphioxus and tunicates as evolutionary model systems. Trends in Ecology and Evolution, 2006, 21, 269-277.	8.7	142
12	Evolution of bilaterian central nervous systems: a single origin?. EvoDevo, 2013, 4, 27.	3.2	139
13	Amphioxus Postembryonic Development Reveals the Homology of Chordate Metamorphosis. Current Biology, 2008, 18, 825-830.	3.9	132
14	Evolutionary crossroads in developmental biology: amphioxus. Development (Cambridge), 2011, 138, 4819-4830.	2.5	120
15	A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nature Genetics, 2016, 48, 336-341.	21.4	113
16	An ancestral whole-genome duplication may not have been responsible for the abundance of duplicated fish genes. Current Biology, 2001, 11, R458-R459.	3.9	112
17	Molecular cloning and characterization of thyroid hormone receptors in teleost fish. Journal of Molecular Endocrinology, 2001, 26, 51-65.	2.5	112
18	The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development (Cambridge), 2002, 129, 2905-2916.	2.5	110

#	Article	IF	CITATIONS
19	Neofunctionalization in Vertebrates: The Example of Retinoic Acid Receptors. PLoS Genetics, 2006, 2, e102.	3.5	108
20	Insights into spawning behavior and development of the european amphioxus (Branchiostoma) Tj ETQq0 0 0 rgB 308B, 484-493.	T /Overloc 1.3	k 10 Tf 50 7(103
21	Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proceedings of the United States of America, 2011, 108, 9160-9165.	7.1	97
22	Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development (Cambridge), 2005, 132, 61-73.	2.5	96
23	Distinct Expression Patterns of Glycoprotein Hormone-α2 and -β5 in a Basal Chordate Suggest Independent Developmental Functions. Endocrinology, 2009, 150, 3815-3822.	2.8	85
24	A conserved retinoid X receptor (RXR) from the mollusk Biomphalaria glabrata transactivates transcription in the presence of retinoids. Journal of Molecular Endocrinology, 2005, 34, 567-582.	2.5	82
25	Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma) Tj ETQq1 1 0.	784314 rg 1.4	;BT/Overlock
26	Hormones and Nuclear Receptors in Schistosome Development. Parasitology Today, 2000, 16, 233-240.	3.0	75
27	Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10320-10325.	7.1	75
28	An amphioxus orthologue of the estrogen receptor that does not bind estradiol: Insights into estrogen receptor evolution. BMC Evolutionary Biology, 2008, 8, 219.	3.2	71
29	Vertebrate-like regeneration in the invertebrate chordate amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 517-522.	7.1	71
30	The emergence of the brain non-CpG methylation system in vertebrates. Nature Ecology and Evolution, 2021, 5, 369-378.	7.8	63
31	The orphan COUP-TF nuclear receptors are markers for neurogenesis from cnidarians to vertebrates. Developmental Biology, 2004, 275, 104-123.	2.0	58
32	Conserved RARE localization in amphioxusHox clusters and implications forHox code evolution in the vertebrate neural crest. Developmental Dynamics, 2006, 235, 1522-1531.	1.8	55
33	Evidence for stasis and not genetic piracy in developmental expression patterns of Branchiostoma lanceolatum and Branchiostoma floridae, two amphioxus species that have evolved independently over the course of 200AMyr. Development Genes and Evolution, 2008, 218, 703-713.	0.9	55
34	Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events. ELife, 2018, 7, .	6.0	53
35	A functionally conserved member of the FTZ-F1 nuclear receptor family from Schistosoma mansoni. FEBS Journal, 2002, 269, 5700-5711.	0.2	50
36	The Complete Nucleotide Sequence of the Mitochondrial DNA of the Agnathan Lampetra fluviatilis: Bearings on the Phylogeny of Cyclostomes. Molecular Biology and Evolution, 2000, 17, 519-529.	8.9	48

#	Article	IF	CITATIONS
37	Evolution of the FGF Gene Family. International Journal of Evolutionary Biology, 2012, 2012, 1-12.	1.0	42
38	Sequencing and Analysis of the Mediterranean Amphioxus (Branchiostoma lanceolatum) Transcriptome. PLoS ONE, 2012, 7, e36554.	2.5	42
39	A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center. Journal of Comparative Neurology, 2015, 523, 251-261.	1.6	41
40	Active Metabolism of Thyroid Hormone During Metamorphosis of Amphioxus. Integrative and Comparative Biology, 2010, 50, 63-74.	2.0	39
41	Nuclear hormone receptors in chordates. Molecular and Cellular Endocrinology, 2011, 334, 67-75.	3.2	38
42	Structural and functional divergence of a nuclear receptor of the RXR family from the trematode parasite Schistosoma mansoni. FEBS Journal, 2000, 267, 3208-3219.	0.2	37
43	Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biology, 2018, 19, 98.	8.8	34
44	Evolution of the Role of RA and FGF Signals in the Control of Somitogenesis in Chordates. PLoS ONE, 2015, 10, e0136587.	2.5	34
45	The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development (Cambridge), 2002, 129, 2905-16.	2.5	32
46	Functional lability of RNA-dependent RNA polymerases in animals. PLoS Genetics, 2019, 15, e1007915.	3.5	30
47	Expression of mitochondrial genes and of the transcription factors involved in the biogenesis of mitochondria Tfam, NRF-1 and NRF-2, in rat liver, testis and brain. Biochimie, 1999, 81, 965-971.	2.6	27
48	Structural and Functional Insights into the Ligand-binding Domain of a Nonduplicated Retinoid X Nuclear Receptor from the Invertebrate Chordate Amphioxus. Journal of Biological Chemistry, 2009, 284, 1938-1948.	3.4	26
49	Characterization of the TLR Family in Branchiostoma lanceolatum and Discovery of a Novel TLR22-Like Involved in dsRNA Recognition in Amphioxus. Frontiers in Immunology, 2018, 9, 2525.	4.8	25
50	Evolution and Diversification of the Nuclear Receptor Superfamilya. Annals of the New York Academy of Sciences, 1998, 839, 143-146.	3.8	24
51	FGF Signaling Emerged Concomitantly with the Origin of Eumetazoans. Molecular Biology and Evolution, 2014, 31, 310-318.	8.9	23
52	An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Frontiers in Cell and Developmental Biology, 2021, 9, 668006.	3.7	23
53	Nodal–Activin pathway is a conserved neural induction signal in chordates. Nature Ecology and Evolution, 2017, 1, 1192-1200.	7.8	22
54	Thyroid hormone increases transcription of GA-binding protein/nuclear respiratory factor-2 α-subunit in rat liver. FEBS Letters, 2002, 514, 309-314.	2.8	20

#	Article	IF	CITATIONS
55	Identification, Evolution and Expression of an Insulin-Like Peptide in the Cephalochordate Branchiostoma lanceolatum. PLoS ONE, 2015, 10, e0119461.	2.5	20
56	Amphicoup-TF, a nuclear orphan receptor of the lancelet Branchiostoma floridae , is implicated in retinoic acid signalling pathways. Development Genes and Evolution, 2000, 210, 471-482.	0.9	19
57	FGFRL1 is a neglected putative actor of the FGF signalling pathway present in all major metazoan phyla. BMC Evolutionary Biology, 2009, 9, 226.	3.2	19
58	Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nature Ecology and Evolution, 2019, 3, 1233-1240.	7.8	19
59	A dynamic history of gene duplications and losses characterizes the evolution of the SPARC family in eumetazoans. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122963.	2.6	18
60	Amphioxus Tbx6/16 and Tbx20 embryonic expression patterns reveal ancestral functions in chordates. Gene Expression Patterns, 2011, 11, 239-243.	0.8	17
61	Diversity of Modes of Reproduction and Sex Determination Systems in Invertebrates, and the Putative Contribution of Genetic Conflict. Genes, 2021, 12, 1136.	2.4	17
62	My Favorite Animal, Amphioxus: Unparalleled for Studying Early Vertebrate Evolution. BioEssays, 2018, 40, e1800130.	2.5	16
63	Organizing chordates with an organizer. BioEssays, 2007, 29, 619-624.	2.5	15
64	Identification and expression analysis of BMP signaling inhibitors genes of the DAN family in amphioxus. Gene Expression Patterns, 2013, 13, 377-383.	0.8	15
65	A Snapshot of the Population Structure of Branchiostoma lanceolatum in the Racou Beach, France, during Its Spawning Season. PLoS ONE, 2011, 6, e18520.	2.5	14
66	Actors of the tyrosine kinase receptor downstream signaling pathways in amphioxus. Evolution & Development, 2009, 11, 13-26.	2.0	13
67	Nuclear Hormone Receptors and Evolution. American Zoologist, 1999, 39, 704-713.	0.7	12
68	Evolution of the vertebrate bone matrix: An expression analysis of the network forming collagen paralogues in amphibian osteoblasts. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 375-384.	1.3	12
69	Assaying Chromatin Accessibility Using ATAC-Seq in Invertebrate Chordate Embryos. Frontiers in Cell and Developmental Biology, 2020, 7, 372.	3.7	12
70	Development of a semi-closed aquaculture system for monitoring of individual amphioxus (Branchiostoma lanceolatum), with high survivorship. Aquaculture, 2008, 281, 145-150.	3.5	11
71	Amphioxus makes the cutâ \in "Again. Communicative and Integrative Biology, 2012, 5, 499-502.	1.4	11
72	The Ontology of the Amphioxus Anatomy and Life Cycle (AMPHX). Frontiers in Cell and Developmental Biology, 2021, 9, 668025.	3.7	10

#	Article	IF	CITATIONS
73	Expression of Fox genes in the cephalochordate Branchiostoma lanceolatum. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	9
74	Developmental cell-cell communication pathways in the cephalochordate amphioxus: actors and functions. International Journal of Developmental Biology, 2017, 61, 697-722.	0.6	9
75	Gain of gene regulatory network interconnectivity at the origin of vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114802119.	7.1	9
76	Evidence of tissue-specific, post-transcriptional regulation of NRF-2 expression. Biochimie, 2000, 82, 1129-1133.	2.6	8
77	Re: Revisiting recent challenges to the ancient fish-specific genome duplication hypothesis. Current Biology, 2001, 11, R1007-R1008.	3.9	7
78	Asymmetron lucayanum: How many species are valid?. PLoS ONE, 2020, 15, e0229119.	2.5	7
79	Endogenous Î ² -galactosidase activity in amphioxus: a useful histochemical marker for the digestive system. Development Genes and Evolution, 2001, 211, 154-156.	0.9	6
80	Phylogenetic analysis of Amphioxus genes of the proprotein convertase family, including aPC6C, a marker of epithelial fusions during embryology. International Journal of Biological Sciences, 2006, 2, 125-132.	6.4	6
81	JNK Mediates Differentiation, Cell Polarity and Apoptosis During Amphioxus Development by Regulating Actin Cytoskeleton Dynamics and ERK Signalling. Frontiers in Cell and Developmental Biology, 2021, 9, 749806.	3.7	5
82	Functions of the FGF signalling pathway in cephalochordates provide insight into the evolution of the prechordal plate. Development (Cambridge), 2022, 149, .	2.5	5
83	Crosstalk between nitric oxide and retinoic acid pathways is essential for amphioxus pharynx development. ELife, 2021, 10, .	6.0	4
84	Gene Regulatory Networks of Epidermal and Neural Fate Choice in a Chordate. Molecular Biology and Evolution, 2022, 39, .	8.9	4
85	Conservation of BMP2/4 expression patterns within the clade Branchiostoma (amphioxus): Resolving interspecific discrepancies. Gene Expression Patterns, 2017, 25-26, 71-75.	0.8	3
86	Spawning Induction and Embryo Micromanipulation Protocols in the Amphioxus Branchiostoma lanceolatum. Methods in Molecular Biology, 2020, 2047, 347-359.	0.9	2
87	The Evolution of Invertebrate Animals. Genes, 2022, 13, 454.	2.4	2
88	Editorial: Evolution of Organismal Form: From Regulatory Interactions to Developmental Processes and Biological Patterns. Frontiers in Genetics, 2016, 7, 148.	2.3	0
89	Lactoferrin Almost Absent from Lactating Rat Mammary Gland is Replaced by Transferrin. , 1997, , 125-134.		0