Bernard M Degnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232269/publications.pdf

Version: 2024-02-01

226 papers

17,606 citations

18482 62 h-index 122 g-index

232 all docs 232 docs citations

times ranked

232

14031 citing authors

#	Article	IF	CITATIONS
1	Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408, 86-89.	27.8	2,167
2	The Draft Genome of <i>Ciona intestinalis</i> : Insights into Chordate and Vertebrate Origins. Science, 2002, 298, 2157-2167.	12.6	1,539
3	The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 2010, 466, 720-726.	27.8	917
4	Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature, 2008, 455, 1193-1197.	27.8	630
5	Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evolutionary Biology, 2007, 7, 33.	3.2	263
6	Genesis and Expansion of Metazoan Transcription Factor Gene Classes. Molecular Biology and Evolution, 2008, 25, 980-996.	8.9	262
7	Parallel Evolution of Nacre Building Gene Sets in Molluscs. Molecular Biology and Evolution, 2010, 27, 591-608.	8.9	239
8	The origin of Metazoa: a unicellular perspective. Nature Reviews Genetics, 2017, 18, 498-512.	16.3	239
9	The mid-developmental transition and the evolution of animal body plans. Nature, 2016, 531, 637-641.	27.8	231
10	Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nature Ecology and Evolution, 2018, 2, 1176-1188.	7.8	226
11	Independent evolution of striated muscles in cnidarians and bilaterians. Nature, 2012, 487, 231-234.	27.8	221
12	Wnt and TGF- \hat{l}^2 Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning. PLoS ONE, 2007, 2, e1031.	2.5	216
13	A Post-Synaptic Scaffold at the Origin of the Animal Kingdom. PLoS ONE, 2007, 2, e506.	2.5	215
14	Protein Evolution by Molecular Tinkering: Diversification of the Nuclear Receptor Superfamily from a Ligand-Dependent Ancestor. PLoS Biology, 2010, 8, e1000497.	5.6	202
15	Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evolutionary Biology, 2009, 9, 249.	3.2	191
16	Cytological Basis of Photoresponsive Behavior in a Sponge Larva. Biological Bulletin, 2001, 201, 323-338.	1.8	187
17	A rapidly evolving secretome builds and patterns a sea shell. BMC Biology, 2006, 4, 40.	3.8	180
18	Unexpected Repertoire of Metazoan Transcription Factors in the Unicellular Holozoan Capsaspora owczarzaki. Molecular Biology and Evolution, 2011, 28, 1241-1254.	8.9	172

#	Article	IF	Citations
19	An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Developmental and Comparative Immunology, 2008, 32, 1582-1592.	2.3	170
20	Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evolution & Development, 2006, 8, 150-173.	2.0	165
21	The NK Homeobox Gene Cluster Predates the Origin of Hox Genes. Current Biology, 2007, 17, 706-710.	3.9	159
22	Novel cytotoxic compounds from the ascidian Lissoclinum bistratum. Journal of Medicinal Chemistry, 1989, 32, 1354-1359.	6.4	157
23	The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature, 2017, 544, 231-234.	27.8	157
24	New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella. Journal of Medicinal Chemistry, 1989, 32, 1349-1354.	6.4	151
25	Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nature Structural and Molecular Biology, 2010, 17, 1030-1034.	8.2	146
26	Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Frontiers in Zoology, 2016, 13, 23.	2.0	144
27	Sponge Genes Provide New Insight into the Evolutionary Origin of the Neurogenic Circuit. Current Biology, 2008, 18, 1156-1161.	3.9	140
28	A genomewide survey of developmentally relevant genes in Ciona intestinalis. Development Genes and Evolution, 2003, 213, 235-244.	0.9	138
29	Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evolution & Development, 1999, 1, 166-171.	2.0	137
30	Early evolution of metazoan transcription factors. Current Opinion in Genetics and Development, 2009, 19, 591-599.	3.3	123
31	The evolutionary origin of hedgehog proteins. Current Biology, 2007, 17, R836-R837.	3.9	121
32	Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Science, 2010, 8, 54.	1.7	119
33	Expression of anterior <i>Hox</i> genes during larval development of the gastropod <i>Haliotis asinina</i> . Evolution & Development, 2003, 5, 508-521.	2.0	113
34	Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebrate Biology, 2002, 121, 171-189.	0.9	112
35	Structure and expression of conserved Wnt pathway components in the demosponge <i>Amphimedon queenslandica</i> . Evolution & Development, 2010, 12, 494-518.	2.0	112
36	Sponge Paleogenomics Reveals an Ancient Role for Carbonic Anhydrase in Skeletogenesis. Science, 2007, 316, 1893-1895.	12.6	111

#	Article	IF	CITATIONS
37	Theetsmultigene family is conserved throughout the Metazoa. Nucleic Acids Research, 1993, 21, 3479-3484.	14.5	106
38	Pluripotency and the origin of animal multicellularity. Nature, 2019, 570, 519-522.	27.8	106
39	Phylogeography of western Pacific Leucetta 'chagosensis' (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Molecular Ecology, 2002, 11, 1753-1768.	3.9	104
40	Nervous and muscle system development in Phascolion strombus (Sipuncula). Development Genes and Evolution, 2005, 215, 509-518.	0.9	104
41	Piecing together evolution of the vertebrate endocrine system. Trends in Genetics, 2004, 20, 359-366.	6.7	100
42	Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evolutionary Biology, 2007, 7, 160.	3.2	100
43	The Origins of Novel Protein Interactions during Animal Opsin Evolution. PLoS ONE, 2007, 2, e1054.	2.5	99
44	The Dawn of Developmental Signaling in the Metazoa. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 81-90.	1.1	94
45	Origin of animal epithelia: insights from the sponge genome. Evolution & Development, 2010, 12, 601-617.	2.0	94
46	Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica. BMC Genomics, 2015, 16, 387.	2.8	91
47	Spectral sensitivity in a sponge larva. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2002, 188, 199-202.	1.6	90
48	Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. Journal of Experimental Biology, 2012, 215, 1278-1286.	1.7	90
49	Deep conservation of the enhancer regulatory code in animals. Science, 2020, 370, .	12.6	89
50	Evolution of the tyrosinase gene family in bivalve molluscs: Independent expansion of the mantle gene repertoire. Acta Biomaterialia, 2014, 10, 3855-3865.	8.3	86
51	The genome of the sponge <i>Amphimedon queenslandica</i> provides new perspectives into the origin of Tollâ€ike and interleukin 1 receptor pathways. Evolution & Development, 2010, 12, 519-533.	2.0	79
52	A hox/hom homeobox gene in sponges. Gene, 1995, 155, 175-177.	2.2	78
53	Evolution of a Novel Carotenoid-Binding Protein Responsible for Crustacean Shell Color. Molecular Biology and Evolution, 2009, 26, 1851-1864.	8.9	78
54	Evolutionary origin of gastrulation: insights from sponge development. BMC Biology, 2014, 12, 26.	3.8	78

#	Article	IF	CITATIONS
55	Early evolution of the LIM homeobox gene family. BMC Biology, 2010, 8, 4.	3.8	77
56	Pattern, synchrony and predictability of spawning of the tropical abalone Haliotis asinina from Heron Reef, Australia. Marine Ecology - Progress Series, 2001, 213, 193-202.	1.9	76
57	A genomewide survey of developmentally relevant genes in Ciona intestinalis. Development Genes and Evolution, 2003, 213, 245-253.	0.9	69
58	Evolutionary genomics of the Fox genes: Origin of gene families and the ancestry of gene clusters. Genomics, 2010, 95, 256-260.	2.9	68
59	Induction of metamorphosis with potassium ions requires development of competence and an anterior signalling centre in the ascidian Herdmania momus. Development Genes and Evolution, 1997, 206, 370-376.	0.9	67
60	Pleistocene isolation and recent gene flow in Haliotis asinina, an Indo-Pacific vetigastropod with limited dispersal capacity. Molecular Ecology, 2006, 16, 289-304.	3.9	67
61	Real-time RT-PCR quantification of Kuruma shrimp transcripts: A comparison of relative and absolute quantification procedures. Journal of Biotechnology, 2007, 129, 391-399.	3.8	67
62	Co-option and <i>de novo</i> gene evolution underlie molluscan shell diversity. Molecular Biology and Evolution, 2017, 34, msw294.	8.9	67
63	A genomewide survey of developmentally relevant genes in Ciona intestinalis. Development Genes and Evolution, 2003, 213, 254-263.	0.9	66
64	Differential expression of immune-related genes and transposable elements in black tiger shrimp (Penaeus monodon) exposed to a range of environmental stressors. Fish and Shellfish Immunology, 2007, 23, 1072-1088.	3.6	66
65	Dynamic and Widespread IncRNA Expression in a Sponge and the Origin of Animal Complexity. Molecular Biology and Evolution, 2015, 32, 2367-2382.	8.9	66
66	Male Accessory Gland Protein Reduces Egg Laying in a Simultaneous Hermaphrodite. PLoS ONE, 2010, 5, e10117.	2.5	65
67	The origin of the ADAR gene family and animal RNA editing. BMC Evolutionary Biology, 2015, 15, 4.	3.2	65
68	Ecological regulation of development: induction of marine invertebrate metamorphosis. International Journal of Developmental Biology, 2002, 46, 679-86.	0.6	65
69	Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa. BMC Evolutionary Biology, 2013, 13, 96.	3.2	64
70	Short-term hyperthermic treatment of Penaeus monodon increases expression of heat shock protein 70 (HSP70) and reduces replication of gill associated virus (GAV). Aquaculture, 2006, 253, 82-90.	3 . 5	63
71	Esterified astaxanthin levels in lobster epithelia correlate with shell colour intensity: Potential role in crustacean shell colour formation. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 141, 307-313.	1.6	62
72	The diversification of the basic leucine zipper family in eukaryotes correlates with the evolution of multicellularity. BMC Evolutionary Biology, 2016, 16, 28.	3.2	62

#	Article	IF	CITATIONS
73	Quantitative real-time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon. Diseases of Aquatic Organisms, 2004, 59, 195-203.	1.0	60
74	Immunocytochemistry and metamorphic fate of the larval nervous system of Triphyllozoon mucronatum (Ectoprocta: Gymnolaemata: Cheilostomata). Zoomorphology, 2005, 124, 161-170.	0.8	59
75	Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiological Genomics, 2007, 31, 126-138.	2.3	59
76	The transcription factor NF-κB in the demosponge Amphimedon queenslandica: insights on the evolutionary origin of the Rel homology domain. Development Genes and Evolution, 2008, 218, 23-32.	0.9	59
77	The evolution of mollusc shells. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e313.	5.9	59
78	The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Developmental Biology, 2007, 311, 200-212.	2.0	58
79	Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Marine Biology, 2005, 147, 681-697.	1.5	57
80	Developmental and Morphogenetic Gene Regulation inHaliotis rufescensLarvae at Metamorphosis. American Zoologist, 1995, 35, 391-398.	0.7	56
81	Demosponge and Sea Anemone Fibrillar Collagen Diversity Reveals the Early Emergence of A/C Clades and the Maintenance of the Modular Structure of Type V/XI Collagens from Sponge to Human. Journal of Biological Chemistry, 2008, 283, 28226-28235.	3.4	55
82	Widespread transcriptional changes preâ€empt the critical pelagic–benthic transition in the vetigastropod <i>Haliotis asinina</i> . Molecular Ecology, 2009, 18, 1006-1025.	3.9	55
83	What sponges can tell us about the evolution of developmental processes. Zoology, 2011, 114, 1-10.	1.2	55
84	Functionalization of a protosynaptic gene expression network. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10612-10618.	7.1	55
85	Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains. Journal of the Royal Society Interface, 2013, 10, 20130041.	3.4	55
86	An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Scientific Reports, 2016, 6, 37546.	3.3	54
87	Microsatellite Genotyping of Individual Abalone Larvae: Parentage Assignment in Aquaculture. Marine Biotechnology, 2001, 3, 478-485.	2.4	53
88	Extreme Aggression in Male Squid Induced by a Î ² -MSP-like Pheromone. Current Biology, 2011, 21, 322-327.	3.9	53
89	Expression of a <i>Scr/Hox5</i> gene in the larval central nervous system of the gastropod <i>Haliotis</i> , a nonâ€segmented spiralian lophotrochozoan. Evolution & Development, 2000, 2, 294-302.	2.0	52
90	Mitochondrial Diversity of Early-Branching Metazoa Is Revealed by the Complete mt Genome of a Haplosclerid Demosponge. Molecular Biology and Evolution, 2007, 24, 19-22.	8.9	52

#	Article	IF	Citations
91	Retinoic acid perturbs Otx gene expression in the ascidian pharynx. Development Genes and Evolution, 2000, 210, 129-139.	0.9	51
92	BLIND ordering of large-scale transcriptomic developmental timecourses. Development (Cambridge), 2014, 141, 1161-1166.	2.5	51
93	Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. ELife, 2017, 6, .	6.0	51
94	Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture, 2006, 259, 146-152.	3. 5	50
95	Retinoic acid disrupts anterior ectodermal and endodermal development in ascidian larvae and postlarvae. Development Genes and Evolution, 1998, 208, 336-345.	0.9	49
96	FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, <i>Idiosepius notoides</i> . Evolution & Development, 2010, 12, 113-130.	2.0	49
97	Evolution of RNA-Binding Proteins in Animals: Insights from Genome-Wide Analysis in the Sponge Amphimedon queenslandica. Molecular Biology and Evolution, 2011, 28, 2289-2303.	8.9	49
98	Control of shell pigmentation by secretory tubules in the abalone mantle. Frontiers in Zoology, 2014, 11, .	2.0	49
99	The Penaeus monodon Chitinase 1 Gene Is Differentially Expressed in the Hepatopancreas During the Molt Cycle. Marine Biotechnology, 2000, 2, 126-135.	2.4	47
100	Candidate chemoreceptor subfamilies differentially expressed in the chemosensory organs of the mollusc Aplysia. BMC Biology, 2009, 7, 28.	3.8	47
101	The initiation of metamorphosis as an ancient polyphenic trait and its role in metazoan life-cycle evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 641-651.	4.0	47
102	Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions. BMC Genomics, 2012, 13, 209.	2.8	47
103	Convergent evolution of a vertebrate-like methylome in a marine sponge. Nature Ecology and Evolution, 2019, 3, 1464-1473.	7.8	47
104	Sponge Development and Antiquity of Animal Pattern Formation. Integrative and Comparative Biology, 2005, 45, 335-341.	2.0	46
105	Origin and Evolution of Laminin Gene Family Diversity. Molecular Biology and Evolution, 2012, 29, 1823-1836.	8.9	45
106	Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinina. Development Genes and Evolution, 2007, 217, 603-612.	0.9	44
107	Origin and evolution of the metazoan non-coding regulatory genome. Developmental Biology, 2017, 427, 193-202.	2.0	42
108	The Iron-Responsive Genome of the Chiton <i>Acanthopleura granulata</i> . Genome Biology and Evolution, 2021, 13, .	2.5	42

#	Article	IF	CITATIONS
109	Gene expression during early ascidian metamorphosis requires signalling by Hemps, an EGF-like protein. Development (Cambridge), 2004, 131, 2921-2933.	2.5	41
110	Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell and Tissue Research, 2010, 342, 161-178.	2.9	41
111	The importance of evo-devo to an integrated understanding of molluscan biomineralisation. Journal of Structural Biology, 2016, 196, 67-74.	2.8	41
112	Muscle-specific regulation of tropomyosin gene expression and myofibrillogenesis differs among muscle systems examined at metamorphosis of the gastropod Haliotis rufescens. Development Genes and Evolution, 1997, 206, 464-471.	0.9	40
113	Marked changes in neuropeptide expression accompany broadcast spawnings in the gastropod Haliotis asinina. Frontiers in Zoology, 2012, 9, 9.	2.0	40
114	Genomic organization of <scp>H</scp> ox and <scp>P</scp> ara <scp>H</scp> ox clusters in the echinoderm, <scp><i>A</i></scp> <i>canthaster planciGenesis, 2014, 52, 952-958.</i>	1.6	40
115	Evolution in temperate and tropical seas: Disparate patterns in southern hemisphere abalone (Mollusca: Vetigastropoda: Haliotidae). Molecular Phylogenetics and Evolution, 2006, 41, 249-256.	2.7	36
116	Mox homeobox expression in muscle lineage of the gastropod Haliotis asinina: evidence for a conserved role in bilaterian myogenesis. Development Genes and Evolution, 2002, 212, 141-144.	0.9	35
117	Phylogenetic Analyses Under Secondary Structure-Specific Substitution Models Outperform Traditional Approaches: Case Studies with Diploblast LSU. Journal of Molecular Evolution, 2007, 64, 543-557.	1.8	35
118	The expression of Delta ligands in the sponge Amphimedon queenslandica suggests an ancient role for Notch signaling in metazoan development. EvoDevo, 2012, 3, 15.	3.2	35
119	The origin of the pelagobenthic metazoan life cycle: what's sex got to do with it?. Integrative and Comparative Biology, 2006, 46, 683-690.	2.0	34
120	Identifying the germline in an equally cleaving mollusc: <i>Vasa</i> and <i>Nanos</i> expression during embryonic and larval development of the vetigastropod <i>Haliotis asinina</i> Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 267-279.	1.3	34
121	Expression of Pax258 in the gastropod statocyst: insights into the antiquity of metazoan geosensory organs. Evolution & Development, 2003, 5, 572-578.	2.0	33
122	Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development. BMC Evolutionary Biology, 2015, 15, 231.	3.2	33
123	Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians. Development Genes and Evolution, 2002, 212, 394-398.	0.9	32
124	Production of triploid Kuruma shrimp, Marsupenaeus (Penaeus) japonicus (Bate) nauplii through inhibition of polar body I, or polar body I and II extrusion using 6-dimethylaminopurine. Aquaculture, 2006, 256, 337-345.	3.5	32
125	Ultrastructure of the Mantle of the Gastropod <i>Haliotis asinina </i> and Mechanisms of Shell Regionalization. Cells Tissues Organs, 2011, 194, 103-107.	2.3	32
126	Expression of POU, Sox, and Pax Genes in the Brain Ganglia of the Tropical Abalone Haliotis asinina. Marine Biotechnology, 2000, 2, 545-557.	2.4	31

#	Article	IF	CITATIONS
127	Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling. Integrative and Comparative Biology, 2015, 55, 1018-1027.	2.0	31
128	Isolation of Amphimedon Developmental Material. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5095-pdb.prot5095.	0.3	29
129	Normal development and embryonic gene activity of the ascidian Herdmania momus. Marine and Freshwater Research, 1996, 47, 543.	1.3	28
130	Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Development Genes and Evolution, 2010, 220, 221-234.	0.9	28
131	Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy. Evolution & Development, 2008, 10, 339-349.	2.0	27
132	The ontogeny of choanocyte chambers during metamorphosis in the demosponge Amphimedon queenslandica. EvoDevo, 2016, 7, 6.	3.2	27
133	Origin and evolution of the sponge aggregation factor gene family. Molecular Biology and Evolution, 2017, 34, msx058.	8.9	27
134	Convergent Antifouling Activities of Structurally Distinct Bioactive Compounds Synthesized Within Two Sympatric Haliclona Demosponges. Marine Biotechnology, 2009, 11, 188-198.	2.4	26
135	The ParaHox gene Gsx patterns the apical organ and central nervous system but not the foregut in scaphopod and cephalopod mollusks. EvoDevo, 2015, 6, 41.	3.2	26
136	Porifera. , 2015, , 65-106.		26
137	rRNA genes from the lower chordateHerdmania momus: structural similarity with higher eukaryotes. Nucleic Acids Research, 1990, 18, 7063-7070.	14.5	25
138	Chymotrypsin mRNA expression in digestive gland amoebocytes: cell specification occurs prior to metamorphosis and gut morphogenesis in the gastropod, Haliotis rufescens. Roux's Archives of Developmental Biology, 1995, 205, 97-101.	1.2	25
139	Neuroectodermal and endodermal expression of the ascidian Cdx gene is separated by metamorphosis. Development Genes and Evolution, 2000, 210, 212-216.	0.9	25
140	Expression of a poriferan potassium channel: insights into the evolution of ion channels in metazoans. Journal of Experimental Biology, 2009, 212, 761-767.	1.7	25
141	POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system. EvoDevo, 2014, 5, 41.	3.2	25
142	Inhibition of Settlement and Metamorphosis of the Ascidian Herdmania curvata by Non-geniculate Coralline Algae. Biological Bulletin, 1999, 197, 332-340.	1.8	24
143	<i>Aplysia</i> temptinâ€fâ^³â€fthe â€~glue' in the waterâ€borne attractin pheromone complex. FEBS Journal, 274, 5425-5437.	, 2007, 4.7	24
144	The Demosponge <i>Amphimedon queenslandica</i> : Reconstructing the Ancestral Metazoan Genome and Deciphering the Origin of Animal Multicellularity. Cold Spring Harbor Protocols, 2008, 2008, pdb.emo108.	0.3	24

#	Article	IF	CITATIONS
145	Host and donor influence on pearls produced by the silver-lip pearl oyster, Pinctada maxima. Aquaculture, 2016, 450, 313-320.	3.5	24
146	Living in a potentially toxic environment: comparisons of endofauna in two congeneric sponges from the Great Barrier Reef. Marine Ecology - Progress Series, 2005, 304, 67-75.	1.9	23
147	The effect of larval age on morphology and gene expression during ascidian metamorphosis. Integrative and Comparative Biology, 2006, 46, 760-776.	2.0	22
148	The systematics of Raspailiidae (Demospongiae: Poecilosclerida: Microcionina) re-analysed with a ribosomal marker. Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 1571-1576.	0.8	22
149	Molecular analysis of two FMRFamideâ€encoding transcripts expressed during the development of the tropical abalone <i>haliotis asinina</i>). Journal of Comparative Neurology, 2011, 519, 2043-2059.	1.6	22
150	Diverse RNA interference strategies in early-branching metazoans. BMC Evolutionary Biology, 2018, 18, 160.	3.2	22
151	Highly polymorphic microsatellite loci in the Heron Reef population of the tropical abaloneHaliotis asinina. Molecular Ecology, 2000, 9, 1184-1186.	3.9	21
152	Digenean trematodes infecting the tropical abalone Haliotis asinina have species-specific cercarial emergence patterns that follow daily or semilunar spawning cycles. Marine Biology, 2005, 148, 285-292.	1.5	20
153	A PL10 vasa-Like Gene in the Kuruma Shrimp, Marsupenaeus japonicus, Expressed During Development and in Adult Gonad. Marine Biotechnology, 2007, 9, 377-387.	2.4	20
154	Will increased storm disturbance affect the biodiversity of intertidal, nonscleractinian sessile fauna on coral reefs?. Global Change Biology, 2008, 14, 2755-2770.	9.5	20
155	Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica. Developmental and Comparative Immunology, 2008, 32, 1270-1280.	2.3	20
156	Does the High Gene Density in the Sponge NK Homeobox Gene Cluster Reflect Limited Regulatory Capacity?. Biological Bulletin, 2008, 214, 205-217.	1.8	20
157	Diversity of Mycobacterium species from marine sponges and their sensitivity to antagonism by sponge-derived rifamycin-synthesizing actinobacterium in the genus Salinispora. FEMS Microbiology Letters, 2010, 313, 33-40.	1.8	20
158	A Mox homeobox gene in the gastropod molluscHaliotis rufescensis differentially expressed during larval morphogenesis and metamorphosis. FEBS Letters, 1997, 411, 119-122.	2.8	19
159	NUMTs in the Sponge Genome Reveal Conserved Transposition Mechanisms in Metazoans. Molecular Biology and Evolution, 2011, 28, 1-5.	8.9	19
160	Characterization of mucusâ€associated proteins from abalone (<i>Haliotis</i>) – candidates for chemical signaling. FEBS Journal, 2012, 279, 437-450.	4.7	19
161	The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials. PLoS ONE, 2016, 11, e0159128.	2.5	19
162	Pleiotropic developmental expression of HasPOU-III, a class III POU gene, in the gastropod Haliotis asinina. Mechanisms of Development, 2002, 114, 129-132.	1.7	18

#	Article	lF	Citations
163	Developmental expression of two Haliotis asinina hemocyanin isoforms. Differentiation, 2005, 73, 341-349.	1.9	18
164	EXPRESSED SEQUENCE TAG ANALYSIS OF GENES EXPRESSED DURING DEVELOPMENT OF THE TROPICAL ABALONE HALIOTIS ASININA. Journal of Shellfish Research, 2006, 25, 225-231.	0.9	18
165	Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Scientific Reports, 2016, 6, 22496.	3.3	18
166	Novel gene containing multiple epidermal growth factor-like motifs transiently expressed in the papillae of the ascidian tadpole larvae. Developmental Dynamics, 1997, 210, 264-273.	1.8	17
167	Whole-Mount In Situ Hybridization in <i>Amphimedon</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5096.	0.3	17
168	Molecular identification of candidate chemoreceptor genes and signal transduction components in the sensory epithelium of <i>Aplysia </i> Journal of Experimental Biology, 2009, 212, 2037-2044.	1.7	17
169	Development of the neuromuscular system during asexual propagation in an invertebrate chordate. Developmental Dynamics, 2009, 238, 2081-2094.	1.8	17
170	Conservation of the egg-laying hormone neuropeptide and attractin pheromone in the spotted sea hare, Aplysia dactylomela. Peptides, 2010, 31, 394-401.	2.4	17
171	The evolution of ependymin-related proteins. BMC Evolutionary Biology, 2018, 18, 182.	3.2	17
172	Evolution and developmental expression of nuclear receptor genes in the ascidian Herdmania. International Journal of Developmental Biology, 2002, 46, 687-92.	0.6	17
173	Sponges. Current Biology, 2005, 15, R114-R115.	3.9	16
174	Molecular characterization and analysis of a truncated serotonin receptor gene expressed in neural and reproductive tissues of abalone. Histochemistry and Cell Biology, 2009, 131, 629-642.	1.7	16
175	Affinities of the family Sollasellidae (Porifera, Demospongiae). II. Molecular evidence. Contributions To Zoology, 2007, 76, 95-102.	0.5	15
176	Control of shell colour changes in the lobster, <i>Panulirus cygnus</i> . Journal of Experimental Biology, 2008, 211, 1512-1519.	1.7	15
177	Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity. Molecular Biology and Evolution, 2017, 34, 2959-2969.	8.9	15
178	Origin of the Animal Circadian Clock: Diurnal and Light-Entrained Gene Expression in the Sponge Amphimedon queenslandica. Frontiers in Marine Science, 2017, 4, .	2.5	15
179	The effects of ionizing radiation on the reproductive capacity of adult Penaeus (Marsupenaeus) japonicus (Bate). Aquaculture, 2005, 250, 194-200.	3.5	14
180	Characterization of Aplysia Alb-1, a candidate water-borne protein pheromone released during egg laying. Peptides, 2008, 29, 152-161.	2.4	14

#	Article	IF	CITATIONS
181	Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biology, 2018, 15, 1-7.	3.1	14
182	Expression of prohormone convertase 2 and the generation of neuropeptides in the developing nervous system of the gastropod Haliotis. International Journal of Developmental Biology, 2009, 53, 1081-1088.	0.6	14
183	Transient expression of a novel serine protease in the ectoderm of the ascidian Herdmania momus during development. Development Genes and Evolution, 1997, 206, 455-463.	0.9	13
184	Early activation of adult organ differentiation during delay of metamorphosis in solitary ascidians, and consequences for juvenile growth. Invertebrate Biology, 2008, 127, 217-236.	0.9	13
185	The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge. BMC Research Notes, 2009, 2, 59.	1.4	13
186	Expression of Sex and Reproduction-Related Genes in Marsupenaeus japonicus. Marine Biotechnology, 2010, 12, 664-677.	2.4	13
187	Variation in rates of early development in Haliotis asinina generate competent larvae of different ages. Frontiers in Zoology, 2012, 9, 2.	2.0	12
188	Lipidomics of the sea sponge Amphimedon queenslandica and implication for biomarker geochemistry. Geobiology, 2017, 15, 836-843.	2.4	12
189	Parasitic castration by the digenian trematodeAllopodocotylesp. alters gene expression in the brain of the host molluscHaliotis asinina. FEBS Letters, 2006, 580, 3769-3774.	2.8	11
190	Differential expression of neuropeptides correlates with growth rate in cultivated Haliotis asinina (Vetigastropoda: Mollusca). Aquaculture, 2012, 334-337, 159-168.	3.5	11
191	Pearls. Current Biology, 2013, 23, R671-R673.	3.9	11
192	Co-expression of synaptic genes in the sponge Amphimedon queenslandica uncovers ancient neural submodules. Scientific Reports, 2019, 9, 15781.	3.3	11
193	Pearl Sac Gene Expression Profiles Associated With Pearl Attributes in the Silver-Lip Pearl Oyster, Pinctada maxima. Frontiers in Genetics, 2020, 11, 597459.	2.3	11
194	The effect of ionizing irradiation of post-larvae on subsequent survival and reproductive performance in the Kuruma shrimp, Penaeus (Marsupenaeus) japonicus (Bate). Aquaculture, 2007, 264, 309-322.	3.5	10
195	THE EFFECTIVENESS OF HEAT, COLD AND 6-DIMETHYLAMINOPURINE SHOCKS FOR INDUCING TETRAPLOIDY IN THE KURUMA SHRIMP, MARSUPENAEUS JAPONICUS (BATE). Journal of Shellfish Research, 2006, 25, 631-637.	0.9	9
196	Sensory sea slugs. Communicative and Integrative Biology, 2010, 3, 423-426.	1.4	8
197	The VD1/RPD2 $\hat{i}\pm 1$ -neuropeptide is highly expressed in the brain of cephalopod mollusks. Cell and Tissue Research, 2012, 348, 439-452.	2.9	8
198	Sponge Long Non-Coding RNAs Are Expressed in Specific Cell Types and Conserved Networks. Non-coding RNA, 2018, 4, 6.	2.6	8

#	Article	IF	Citations
199	How to Build an Allorecognition System: A Guide for Prospective Multicellular Organisms. Advances in Marine Genomics, 2015, , 395-424.	1.2	8
200	Cloning of a Major Repeat DNA Sequence from Pyura stolonifera. DNA and Cell Biology, 1988, 7, 433-439.	5.2	7
201	Impact of ecologically relevant heat shocks on Hsp developmental function in the vetigastropod <i>Haliotis asinina (i). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 450-464.</i>	1.3	7
202	Reduced loads of pre-existing Gill-associated virus (GAV) infection in juvenile Penaeus monodon injected with single or multiple GAV-specific dsRNAs. Aquaculture, 2014, 434, 272-276.	3.5	7
203	Determining the Biomass Composition of a Sponge Holobiont for Flux Analysis. Methods in Molecular Biology, 2014, 1191, 107-125.	0.9	7
204	Distal regulation, silencers, and a shared combinatorial syntax are hallmarks of animal embryogenesis. Genome Research, 2022, 32, 474-487.	5.5	7
205	Analysis of evolutionary, biogeographical and taxonomic patterns of nucleotide composition in demosponge rRNA. Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 1607-1614.	0.8	6
206	Identification of an Attractin-Like Pheromone in the Mucus-Secreting Hypobranchial Gland of the Abalone <i>Haliotis asinina </i> Linnaeus. Journal of Shellfish Research, 2010, 29, 699-704.	0.9	6
207	Comparative Morphological Analysis of the Immature Stages of the Grass Blue Butterflies Zizeeria and Zizina (Lepidoptera: Lycaenidae). Zoological Science, 2016, 33, 384.	0.7	6
208	The first identification of complete Eph-ephrin signalling in ctenophores and sponges reveals a role for neofunctionalization in the emergence of signalling domains. BMC Evolutionary Biology, 2019, 19, 96.	3.2	6
209	The Tropical Abalone Haliotis Asinina as a Model Species to Investigate the Molecular and Cellular Mechanisms Controlling Growth in Abalone. , 1998, , 135-140.		6
210	Nacre Evolution : A Proteomic Approach. Materials Research Society Symposia Proceedings, 2009, 1187, 13.	0.1	5
211	Identification of Genes Differentially Expressed in the Ganglia of Growing <i>Haliotis asinina</i> Journal of Shellfish Research, 2010, 29, 741-752.	0.9	5
212	Staining and Tracking Methods for Studying Sponge Cell Dynamics. Methods in Molecular Biology, 2021, 2219, 81-97.	0.9	5
213	Analysis of Cell Movement in Amphimedon Embryos by Injection of Fluorescent Tracers. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5097-pdb.prot5097.	0.3	4
214	Analysis of the Biomass Composition of the Demosponge Amphimedon queenslandica on Heron Island Reef, Australia. Marine Drugs, 2014, 12, 3733-3753.	4.6	4
215	Identification of a female spawnâ€associated Kazalâ€type inhibitor from the tropical abalone <i>Haliotis asinina</i>). Journal of Peptide Science, 2016, 22, 461-470.	1.4	4
216	Modularity of gene-regulatory networks revealed in sea-star development. BMC Biology, 2011, 9, 6.	3.8	3

#	Article	IF	CITATIONS
217	Seasonal changes in environmental nutrient availability and biomass composition in a coral reef sponge. Marine Biology, 2017, 164, 1.	1.5	3
218	Transcriptomic Profiling of the Allorecognition Response to Grafting in the Demosponge Amphimedon queenslandica. Marine Drugs, 2017, 15, 136.	4.6	3
219	Settlement and Metamorphosis of the Tropical Ascidian Herdmania curvata., 2001,, 258-263.		3
220	Genotyping Individual Amphimedon Embryos, Larvae, and Adults. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5098-pdb.prot5098.	0.3	2
221	The rise of genomics sheds light on the dawn of animals. Evolution & Development, 2010, 12, 425-427.	2.0	2
222	First evidence of miniature transposable elements in sponges (Porifera). Hydrobiologia, 2012, 687, 43-47.	2.0	2
223	Identification of cis-regulatory sequences in ascidian ribosomal DNA using a rapid filter-binding assay. Gene, 1991, 109, 249-253.	2.2	1
224	Homeobox Genes, Retinoic Acid and the Development and Evolution of Dual Body Plans in the AscidianHerdmania curvata. American Zoologist, 2001, 41, 664-675.	0.7	1
225	Phototransduction in a marine sponge provides insights into the origin of animal vision. IScience, 2022, 25, 104436.	4.1	1
226	Molecular Analysis of Invertebrate Development and Growth: Identification of Developmentally Regulated Genes in Model and Commercially Important Species., 1998,, 343-358.		0