Marcelo Tabarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232215/publications.pdf

Version: 2024-02-01

174 papers 13,910 citations

25034 57 h-index 24982 109 g-index

177 all docs

177 docs citations

177 times ranked

12997 citing authors

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature, 2000, 404, 72-74.	27.8	488
3	Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 2017, 92, 326-340.	10.4	410
4	From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 2018, 16, 208-214.	1.9	379
5	Prospects for biodiversity conservation in the Atlantic Forest: Lessons from aging human-modified landscapes. Biological Conservation, 2010, 143, 2328-2340.	4.1	355
6	Experiences from the <scp>B</scp> razilian <scp>A</scp> tlantic <scp>F</scp> orest: ecological findings and conservation initiatives. New Phytologist, 2014, 204, 459-473.	7.3	341
7	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	7.1	335
8	Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conservation Biology, 2005, 19, 701-706.	4.7	333
9	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	3.6	330
10	On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution, 2013, 28, 462-468.	8.7	328
11	Designing optimal humanâ€modified landscapes for forest biodiversity conservation. Ecology Letters, 2020, 23, 1404-1420.	6.4	279
12	Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biological Conservation, 2008, 141, 249-260.	4.1	269
13	Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biological Conservation, 1999, 91, 119-127.	4.1	266
14	The †few winners and many losers†paradigm revisited: Emerging prospects for tropical forest biodiversity. Biological Conservation, 2012, 155, 136-140.	4.1	266
15	Challenges and Opportunities for Biodiversity Conservation in the Brazilian Atlantic Forest. Conservation Biology, 2005, 19, 695-700.	4.7	265
16	Edgeâ€effects Drive Tropical Forest Fragments Towards an Early‧uccessional System. Biotropica, 2008, 40, 657-661.	1.6	254
17	Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distributions, 2011, 17, 287-296.	4.1	241
18	Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodiversity and Conservation, 2004, 13, 1419-1425.	2.6	220

#	Article	IF	Citations
19	Brazil's environmental leadership at risk. Science, 2014, 346, 706-707.	12.6	212
20	Abiotic and vertebrate seed dispersal in the Brazilian Atlantic forest: implications for forest regeneration. Biological Conservation, 2002, 106, 165-176.	4.1	202
21	Caatinga: The Scientific Negligence Experienced by a Dry Tropical Forest. Tropical Conservation Science, 2011, 4, 276-286.	1.2	199
22	Plant βâ€diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. Journal of Ecology, 2013, 101, 1449-1458.	4.0	189
23	Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology, 2015, 52, 611-620.	4.0	186
24	Biogeographical relationships among tropical forests in north-eastern Brazil. Journal of Biogeography, 2007, 34, 437-446.	3.0	168
25	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	12.6	165
26	The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot. , 2011, , 405-434.		161
27	Precipitation mediates the effect of human disturbance on the Brazilian Caatinga vegetation. Journal of Ecology, 2017, 105, 828-838.	4.0	158
28	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144
29	Forest edge in the Brazilian Atlantic forest: drastic changes in tree species assemblages. Oryx, 2004, 38, 389-394.	1.0	143
30	Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. Biological Conservation, 2009, 142, 1154-1165.	4.1	139
31	Changes in Tree Reproductive Traits Reduce Functional Diversity in a Fragmented Atlantic Forest Landscape. PLoS ONE, 2007, 2, e908.	2.5	132
32	Plant Herbivore Interactions at the Forest Edge. Progress in Botany Fortschritte Der Botanik, 2008, , 423-448.	0.3	126
33	Biased seed rain in forest edges: Evidence from the Brazilian Atlantic forest. Biological Conservation, 2006, 132, 50-60.	4.1	124
34	Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environmental Science and Policy, 2013, 33, 395-404.	4.9	118
35	Seed Dispersal by Ants in the Semi-arid Caatinga of North-east Brazil. Annals of Botany, 2007, 99, 885-894.	2.9	116
36	Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Security, 2020, 12, 1425-1442.	5. 3	114

#	Article	IF	CITATIONS
37	The Multiple Impacts of Leafâ€Cutting Ants and Their Novel Ecological Role in Humanâ€Modified Neotropical Forests. Biotropica, 2014, 46, 516-528.	1.6	110
38	Burning biodiversity: Fuelwood harvesting causes forest degradation in human-dominated tropical landscapes. Global Ecology and Conservation, 2015, 3, 200-209.	2.1	109
39	Profound impoverishment of the large-tree stand in a hyper-fragmented landscape of the Atlantic forest. Forest Ecology and Management, 2008, 256, 1910-1917.	3.2	103
40	Effects of Pioneer Tree Species Hyperabundance on Forest Fragments in Northeastern Brazil. Conservation Biology, 2010, 24, 1654-1663.	4.7	103
41	The Caatinga: Understanding the Challenges. , 2017, , 3-19.		102
42	A regeneração de uma floresta tropical montana após corte e queima (São Paulo - Brasil). Revista Brasileira De Biologia, 1999, 59, 239-250.	0.3	102
43	Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology, 2016, 97, 1583-1592.	3.2	100
44	What Role Should Government Regulation Play in Ecological Restoration? Ongoing Debate in São Paulo State, Brazil. Restoration Ecology, 2011, 19, 690-695.	2.9	99
45	Governing and Delivering a Biome-Wide Restoration Initiative: The Case of Atlantic Forest Restoration Pact in Brazil. Forests, 2014, 5, 2212-2229.	2.1	99
46	Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1249-1270.	2.1	93
47	Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biological Conservation, 2020, 241, 108368.	4.1	93
48	Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodiversity and Conservation, 2016, 25, 943-956.	2.6	86
49	Edge-Related Loss of Tree Phylogenetic Diversity in the Severely Fragmented Brazilian Atlantic Forest. PLoS ONE, 2010, 5, e12625.	2.5	85
50	Lessons from Fragmentation Research: Improving Management and Policy Guidelines for Biodiversity Conservation. Conservation Biology, 2005, 19, 734-739.	4.7	81
51	Predicting Extinction Risk of Brazilian Atlantic Forest Angiosperms. Conservation Biology, 2014, 28, 1349-1359.	4.7	78
52	Carbon Storage in a Fragmented Landscape of Atlantic Forest: The Role Played by Edge-Affected Habitats and Emergent Trees. Tropical Conservation Science, 2011, 4, 349-358.	1.2	76
53	Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology, 2012, 100, 702-711.	4.0	74
54	Dung beetle persistence in human-modified landscapes: Combining indicator species with anthropogenic land use and fragmentation-related effects. Ecological Indicators, 2015, 55, 65-73.	6.3	71

#	Article	IF	Citations
55	Title is missing!. Plant Ecology, 2000, 148, 149-155.	1.6	70
56	Seed Dispersal of the Palm Attalea oleifera in a Remnant of the Brazilian Atlantic Forest. Biotropica, 2004, 36, 74-84.	1.6	70
57	How leaf-cutting ants impact forests: drastic nest effects on light environment and plant assemblages. Oecologia, 2010, 162, 103-115.	2.0	69
58	Ecosystem engineering by leaf-cutting ants: nests of Atta cephalotes drastically alter forest structure and microclimate. Ecological Entomology, 2011, 36, 14-24.	2.2	69
59	Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Arvore, 2010, 34, 455-470.	0.5	64
60	A framework for deriving measures of chronic anthropogenic disturbance: Surrogate, direct, single and multi-metric indices in Brazilian Caatinga. Ecological Indicators, 2018, 94, 274-282.	6.3	63
61	Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest. Environmental Research Letters, 2018, 13, 025005.	5.2	62
62	Winner–Loser Species Replacements in Human-Modified Landscapes. Trends in Ecology and Evolution, 2021, 36, 545-555.	8.7	61
63	Seed dispersal, plant recruitment and spatial distribution of Bactris acanthocarpa Martius (Arecaceae) in a remnant of Atlantic forest in northeast Brazil. Acta Oecologica, 2001, 22, 259-268.	1.1	60
64	O Banco de sementes de um trecho de uma floresta Atlântica montana (São Paulo - Brasil). Revista Brasileira De Biologia, 1999, 59, 319-328.	0.3	59
65	Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies. PLoS ONE, 2019, 14, e0217028.	2.5	58
66	Multiple drivers of aboveground biomass in a human-modified landscape of the Caatinga dry forest. Forest Ecology and Management, 2019, 435, 57-65.	3. 2	58
67	The soil seed bank during Atlantic Forest regeneration in Southeast Brazil. Revista Brasileira De Biologia, 2001, 61, 35-44.	0.3	54
68	Soilâ€mediated filtering organizes tree assemblages in regenerating tropical forests. Journal of Ecology, 2018, 106, 137-147.	4.0	54
69	Variation of seed dispersal spectrum of woody plants across a rainfall gradient in north-eastern Brazil. Journal of Arid Environments, 2003, 53, 197-210.	2.4	51
70	Leafâ€cutting ants as ecosystem engineers: topsoil andÂlitter perturbations around <i>Atta cephalotes</i> nests reduce nutrient availability. Ecological Entomology, 2013, 38, 497-504.	2.2	51
71	The Nature of Seedling Assemblages in a Fragmented Tropical Landscape: Implications for Forest Regeneration. Biotropica, 2013, 45, 386-394.	1.6	50
72	Socioeconomic differences among resident, users and neighbour populations of a protected area in the Brazilian dry forest. Journal of Environmental Management, 2019, 232, 607-614.	7.8	50

#	Article	IF	CITATIONS
73	Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecological Applications, 2016, 26, 1816-1826.	3.8	46
74	Leaf-cutting ant populations profit from human disturbances in tropical dry forest in Brazil. Journal of Tropical Ecology, 2017, 33, 337-344.	1.1	46
75	A riqueza de espécies arbóreas na floresta atlântica de encosta no estado de São Paulo (Brasil). Revista Brasileira De Botanica, 1999, 22, 217.	1.3	45
76	Leaf-cutting ants proliferate in the Amazon: an expected response to forest edge?. Journal of Tropical Ecology, 2011, 27, 645-649.	1.1	44
77	Spatial replacement of dung beetles in edgeâ€affected habitats: biotic homogenization or divergence in fragmented tropical forest landscapes?. Diversity and Distributions, 2016, 22, 400-409.	4.1	43
78	Biodiversity surrogacy: indicator taxa as predictors of total species richness in Brazilian Atlantic forest and Caatinga. Biodiversity and Conservation, 2010, 19, 3347-3360.	2.6	42
79	Euphorbiaceae responses to chronic anthropogenic disturbances in Caatinga vegetation: from species proliferation to biotic homogenization. Plant Ecology, 2017, 218, 749-759.	1.6	42
80	Landscape Attributes Drive Complex Spatial Microclimate Configuration of Brazilian Atlantic Forest Fragments. Tropical Conservation Science, 2010, 3, 389-402.	1.2	39
81	Colonização de clareiras naturais na floresta atlântica no sudeste do Brasil. Revista Brasileira De Botanica, 1997, 20, 57-66.	1.3	38
82	Land use, fallow period and the recovery of a Caatinga forest. Biotropica, 2016, 48, 586-597.	1.6	38
83	Clareiras naturais e a riqueza de especies pioneiras em uma floresta Atlantica montana. Revista Brasileira De Biologia, 1999, 59, 251-261.	0.3	37
84	Distance from roads and cities as a predictor of habitat loss and fragmentation in the caatinga vegetation of Brazil. Brazilian Journal of Biology, 2002, 62, 897-905.	0.9	36
85	Extirpation of large-seeded seedlings from the edge of a large Brazilian Atlantic forest fragment. Ecoscience, 2007, 14, 124-129.	1.4	36
86	Edge Effects and Seedling Bank Depletion: The Role Played by the Early Successional Palm <i>Attalea oleifera</i> (Arecaceae) in the Atlantic Forest. Biotropica, 2010, 42, 158-166.	1.6	36
87	Reduced availability of large seeds constrains Atlantic forest regeneration. Acta Oecologica, 2012, 39, 61-66.	1.1	36
88	Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic and Applied Ecology, 2019, 40, 1-11.	2.7	36
89	Resprouting drives successional pathways and the resilience of Caatinga dry forest in human-modified landscapes. Forest Ecology and Management, 2021, 482, 118881.	3.2	36
90	Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecology, 2016, 217, 1129-1140.	1.6	35

#	Article	IF	Citations
91	Phylogenetic Impoverishment of Amazonian Tree Communities in an Experimentally Fragmented Forest Landscape. PLoS ONE, 2014, 9, e113109.	2.5	34
92	Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecology and Conservation, 2020, 18, 213-222.	1.9	34
93	A structural gradient in cerrado vegetation of Brazil: changes in woody plant density, species richness, life history and plant composition. Journal of Tropical Ecology, 2002, 18, 775-794.	1.1	33
94	The introduced tree Prosopis juliflora is a serious threat to native species of the Brazilian Caatinga vegetation. Science of the Total Environment, 2014, 481, 108-113.	8.0	33
95	Foraging in highly dynamic environments: leafâ€cutting ants adjust foraging trail networks to pioneer plant availability. Entomologia Experimentalis Et Applicata, 2013, 147, 110-119.	1.4	31
96	Functional diversity and composition of Caatinga woody flora are negatively impacted by chronic anthropogenic disturbance. Journal of Ecology, 2019, 107, 2291-2302.	4.0	30
97	Critical role and collapse of tropical mega-trees: A key global resource. Advances in Ecological Research, 2020, 62, 253-294.	2.7	29
98	The Future of the Atlantic Forest in Northeastern Brazil. Conservation Biology, 2001, 15, 819-820.	4.7	28
99	Bromeliad species of the Atlantic forest of north-east Brazil: losses of critical populations of endemic species. Oryx, 2006, 40, 218-224.	1.0	28
100	Decreasing abundance of leaf-cutting ants across a chronosequence of advancing Atlantic forest regeneration. Journal of Tropical Ecology, 2009, 25, 223-227.	1.1	27
101	Contrasting Demographic Structure of Short―and Longâ€lived Pioneer Tree Species on Amazonian Forest Edges. Biotropica, 2012, 44, 771-778.	1.6	27
102	Fruit-feeding butterflies in edge-dominated habitats: community structure, species persistence and cascade effect. Journal of Insect Conservation, 2016, 20, 539-548.	1.4	26
103	Harvesting of Protium heptaphyllum (Aubl.) March. seeds (Burseraceae) by the leaf-cutting ant Atta sexdens L. promotes seed aggregation and seedling mortality. Revista Brasileira De Botanica, 2007, 30, 553-560.	1.3	25
104	Performance and fate of tree seedlings on and around nests of the leaf-cutting ant Atta cephalotes: Ecological filters in a fragmented forest. Austral Ecology, 2011, 36, 779-790.	1.5	25
105	Do abandoned nests of leafâ€cutting ants enhance plant recruitment in the Atlantic Forest?. Austral Ecology, 2011, 36, 220-232.	1.5	25
106	Leaf-cutting ants alter seedling assemblages across second-growth stands of Brazilian Atlantic forest. Journal of Tropical Ecology, 2012, 28, 361-368.	1.1	24
107	Restoration Reserves as Biodiversity Safeguards in Human-Modified Landscapes. Natureza A Conservacao, 2013, 11, 186-190.	2.5	24
108	Biodiversity Persistence in Highly Human-Modified Tropical Landscapes Depends on Ecological Restoration. Tropical Conservation Science, 2013, 6, 705-710.	1.2	23

#	Article	IF	Citations
109	The alien flora of Brazilian Caatinga: deliberate introductions expand the contingent of potential invaders. Biological Invasions, 2015, 17, 51-56.	2.4	23
110	Ant protection against herbivores and nectar thieves in Passiflora coccinea flowers. Ecoscience, 2006, 13, 431-438.	1.4	22
111	The Future of the Caatinga. , 2017, , 461-474.		22
112	Seed predation by rodents and safe sites for large-seeded trees in a fragment of the Brazilian Atlantic forest. Brazilian Journal of Biology, 2009, 69, 763-771.	0.9	21
113	Plant trait distribution and the spatial reorganization of tree assemblages in a fragmented tropical forest landscape. Plant Ecology, 2016, 217, 31-42.	1.6	20
114	Plant–Animal Interactions in the Caatinga: Overview and Perspectives. , 2017, , 255-278.		20
115	Drastic impoverishment of the soil seed bank in a tropical dry forest exposed to slash-and-burn agriculture. Forest Ecology and Management, 2022, 513, 120185.	3.2	19
116	Human disturbance promotes herbivory by leafâ€cutting ants in the Caatinga dry forest. Biotropica, 2018, 50, 779-788.	1.6	18
117	Extensive clonal propagation and resprouting drive the regeneration of a Brazilian dry forest. Journal of Tropical Ecology, 2021, 37, 35-42.	1.1	18
118	Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 2021, 30, 1430-1446.	5.8	18
119	Soil attributes structure plant assemblages across an Atlantic forest mosaic. Journal of Plant Ecology, 2018, 11, 613-622.	2.3	17
120	Functional organization of woody plant assemblages along precipitation and human disturbance gradients in a seasonally dry tropical forest. Biotropica, 2019, 51, 838-850.	1.6	17
121	Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 2019, 98, 523-530.	6.3	17
122	Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient. PLoS ONE, 2015, 10, e0136018.	2.5	16
123	Intensification of a \tilde{A} §a \tilde{A} -palm management largely impoverishes tree assemblages in the Amazon estuarine forest. Biological Conservation, 2021, 261, 109251.	4.1	16
124	Community-Level Patterns of Insect Herbivory in a Fragmented Atlantic Forest Landscape. Environmental Entomology, 2013, 42, 430-437.	1.4	15
125	Leafâ€cutting ants negatively impact the regeneration of the Caatinga dry forest across abandoned pastures. Biotropica, 2020, 52, 686-696.	1.6	15
126	Water availability mediates functional shifts across ontogenetic stages in a regenerating seasonally dry tropical forest. Journal of Vegetation Science, 2020, 31, 1088-1099.	2.2	15

#	Article	IF	CITATIONS
127	Introduced goats reduce diversity and biomass of herbs in <i>Caatinga</i> dry forest. Land Degradation and Development, 2021, 32, 79-90.	3.9	15
128	Relocation of Croton sonderianus (Euphorbiaceae) seeds by Pheidole fallax Mayr (Formicidae): a case of post-dispersal seed protection by ants?. Neotropical Entomology, 2011, 40, 440-444.	1.2	14
129	Altered herb assemblages in fragments of the Brazilian Atlantic forest. Biological Conservation, 2015, 191, 588-595.	4.1	14
130	Phylogenetic dimension of tree communities reveals high conservation value of disturbed tropical rain forests. Diversity and Distributions, 2018, 24, 776-790.	4.1	14
131	Divergent responses of plant reproductive strategies to chronic anthropogenic disturbance and aridity in the Caatinga dry forest. Science of the Total Environment, 2020, 704, 135240.	8.0	14
132	Plant–pollinator interactions in urban ecosystems worldwide: A comprehensive review including research funding and policy actions. Ambio, 2021, 50, 884-900.	5 . 5	14
133	Caatinga: legado, trajetória e desafios rumo à sustentabilidade. Ciência E Cultura, 2018, 70, 25-29.	0.0	14
134	Foraging activity of leafâ€cutting ants changes light availability and plant assemblage in <scp>A</scp> tlantic forest. Ecological Entomology, 2016, 41, 442-450.	2.2	13
135	Impoverished woody seedling assemblages and the regeneration of Caatinga dry forest in a humanâ€modified landscape. Biotropica, 2022, 54, 670-681.	1.6	13
136	Tropical Biodiversity in Humanâ€Modified Landscapes: What is our Trump Card?. Biotropica, 2010, 42, 553-554.	1.6	12
137	Seed Dispersal and Demography of Pioneer Trees: The Case of Hortia arborea. Plant Biology, 2003, 5, 359-365.	3.8	11
138	The effects of environmental constraints on plant community organization depend on which traits are measured. Journal of Vegetation Science, 2016, 27, 1264-1274.	2.2	11
139	Neglected but Potent Dry Forest Players: Ecological Role and Ecosystem Service Provision of Biological Soil Crusts in the Human-Modified Caatinga. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	11
140	Compensatory dynamics on the community structure of fruit-feeding butterflies across hyper-fragmented Atlantic forest habitats. Ecological Indicators, 2019, 98, 276-284.	6.3	11
141	Urban green areas retain just a small fraction of tree reproductive diversity of the Atlantic forest. Urban Forestry and Urban Greening, 2020, 54, 126779.	5. 3	11
142	Unraveling the drivers of plant taxonomic and phylogenetic \hat{l}^2 -diversity in a human-modified tropical dry forest. Biodiversity and Conservation, 2021, 30, 1049-1065.	2.6	11
143	Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest. Environmental Entomology, 2016, 45, 1161-1169.	1.4	10
144	Pollination partial recovery across monospecific plantations of a native tree (Inga vera, Leguminosae) in the Atlantic forest: Lessons for restoration. Forest Ecology and Management, 2018, 427, 383-391.	3.2	10

#	Article	IF	CITATIONS
145	The palm <i>Syagrus coronata</i> proliferates and structures vascular epiphyte assemblages in a human-modified landscape of the Caatinga dry forest. Journal of Tropical Ecology, 2020, 36, 123-132.	1.1	10
146	Intense mycorrhizal root colonization in a human-modified landscape of the Caatinga dry forest. Forest Ecology and Management, 2020, 462, 117970.	3.2	10
147	Galling Insects as Indicators of Habitat Quality. , 2014, , 143-150.		10
148	Seed germination and early seedling survival of the invasive species <i>Prosopis juliflora</i> (Fabaceae) depend on habitat and seed dispersal mode in the Caatinga dry forest. PeerJ, 2020, 8, e9607.	2.0	10
149	Pollinator-dependent crops in Brazil yield nearly half of nutrients for humans and livestock feed. Global Food Security, 2021, 31, 100587.	8.1	10
150	Secondary forests as biodiversity repositories in human-modified landscapes: insights from the Neotropics. Boletim Do Museu Paraense EmÃlio Goeldi Ciências Naturais (Impresso), 2012, 7, 319-328.	0.2	10
151	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
152	Predação e remoção de sementes de cinco espécies de palmeiras por Guerlinguetus ingrami (Thomas,) T	j ETQq0 0	0 rgBT /Over
153	Protected areas and the neglected contribution of Indigenous Peoples and local communities: Struggles for environmental justice in the Caatinga dry forest. People and Nature, 2023, 5, 1739-1755.	3.7	9
154	Seed shadow, seedling recruitment, and spatial distribution of Buchenavia capitata (Combretaceae) in a fragment of the Brazilian Atlantic Forest. Brazilian Journal of Biology, 2006, 66, 883-890.	0.9	8
155	Habitat fragmentation, EFNâ€bearing trees and ant communities: Ecological cascades in Atlantic Forest of northeastern Brazil. Austral Ecology, 2017, 42, 31-39.	1.5	8
156	Depauperation and divergence of plantâ€specialist herbivore assemblages in a fragmented tropical landscape. Ecological Entomology, 2019, 44, 172-181.	2.2	8
157	Arbuscular mycorrhizal inoculation increases drought tolerance and survival of Cenostigma microphyllum seedlings in a seasonally dry tropical forest. Forest Ecology and Management, 2021, 492, 119213.	3.2	8
158	Seedling assemblages and the alternative successional pathways experienced by Atlantic forest fragments. Plant Ecology and Diversity, 2015, 8, 483-492.	2.4	7
159	Preserving 40% forest cover is a valuable and wellâ€supported conservation guideline: reply to Banksâ€Leite <i>et al</i>	6.4	7
160	Recovery of dung beetle assemblages in regenerating Caatinga dry forests following slash-and-burn agriculture. Forest Ecology and Management, 2021, 496, 119423.	3.2	7
161	Divergent herb communities in drier and chronically disturbed areas of the Brazilian Caatinga. Perspectives in Ecology and Conservation, 2022, 20, 132-140.	1.9	7
162	Chronic anthropogenic disturbances and aridity negatively affect specialized reproductive traits and strategies of edible fruit plant assemblages in a Caatinga dry forest. Forest Ecology and Management, 2022, 514, 120214.	3.2	6

#	Article	IF	CITATIONS
163	Spatial Distribution and Fruiting Phenology of Protium heptaphyllum (Burseraceae) Determine the Design of the Underground Foraging System of Atta sexdens L. (Hymenoptera: Formicidae). Neotropical Entomology, 2012, 41, 257-262.	1.2	5
164	Ecology of Leaf-Cutting Ants in Human-Modified Landscapes. , 2017, , 73-90.		5
165	Plant and Pollination Blindness: Risky Business for Human Food Security. BioScience, 0, , .	4.9	5
166	Habitat fragmentation and forest management alter woody plant communities in a Central European beech forest landscape. Biodiversity and Conservation, 2020, 29, 2729-2747.	2.6	4
167	Crossâ€scale drivers of woody plant species commonness and rarity in the Brazilian drylands. Diversity and Distributions, 2022, 28, 1497-1511.	4.1	4
168	Neglected diversity of crop pollinators: Lessons from the world's largest tropical country. Perspectives in Ecology and Conservation, 2021, 19, 500-504.	1.9	3
169	Directional changes in plant assemblages along an altitudinal gradient in northeast Brazil. Brazilian Journal of Biology, 2007, 67, 777-779.	0.9	3
170	Phylogenetic signal in leaf-cutting ant diet in the fragmented Atlantic rain forest. Journal of Tropical Ecology, 2019, 35, 144-147.	1.1	2
171	Interações planta-animal na Caatinga: visão geral e perspectivas futuras. Ciência E Cultura, 2018, 70, 35-40.	0.0	1
172	Phenology, nectar dynamics and reproductive success of Inga vera (Leguminosae) in monospecific plantations and forest remnants in Atlantic forest: Dataset exploration. Data in Brief, 2018, 20, 632-638.	1.0	0
173	ATLANTIC POLLINATION: a data set of flowers and interaction with nectarâ€feeding vertebrates from the Atlantic Forest. Ecology, 2021, , e03595.	3.2	0
174	Functional reorganization of dung beetle assemblages in forest-replacing sugarcane plantations. Journal of Insect Conservation, 0 , , .	1.4	0