
Georgina L Hold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Microbiota in Gastrointestinal Cancer and Cancer Treatment: Chance or Curse?. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 857-874.	4.5	30
2	Redefining intestinal immunity with single-cell transcriptomics. Mucosal Immunology, 2022, 15, 531-541.	6.0	12
3	Refining a Protocol for Faecal Microbiota Engraftment in Animal Models After Successful Antibiotic-Induced Gut Decontamination. Frontiers in Medicine, 2022, 9, 770017.	2.6	7
4	Review article: the future of microbiomeâ€based therapeutics. Alimentary Pharmacology and Therapeutics, 2022, 56, 192-208.	3.7	21
5	A standardised model for stool banking for faecal microbiota transplantation: a consensus report from a multidisciplinary UEG working group. United European Gastroenterology Journal, 2021, 9, 229-247.	3.8	66
6	Biopsy Sampling in Upper Gastrointestinal Endoscopy: A Survey from 10 Tertiary Referral Centres Across Europe. Digestive Diseases, 2021, 39, 179-189.	1.9	2
7	The Impact of <i>NOD2</i> Genetic Variants on the Gut Mycobiota in Crohn's Disease Patients in Remission and in Individuals Without Gastrointestinal Inflammation. Journal of Crohn's and Colitis, 2021, 15, 800-812.	1.3	22
8	Changes in Gut Microbiota Due to Gastrointestinal Surgery. , 2021, , 139-139.		0
9	Australia IBD Microbiome (AIM) Study: protocol for a multicentre longitudinal prospective cohort study. BMJ Open, 2021, 11, e042493.	1.9	6
10	Long-Term Iron Deficiency and Dietary Iron Excess Exacerbate Acute Dextran Sodium Sulphate-Induced Colitis and Are Associated with Significant Dysbiosis. International Journal of Molecular Sciences, 2021, 22, 3646.	4.1	8
11	Next-generation sequencing as a clinical laboratory tool for describing different microbiotas: an urgent need for future paediatric practice. Archives of Disease in Childhood, 2021, 106, 1035-1035.	1.9	0
12	Inflammatory bowel disease and the gut microbiota. Proceedings of the Nutrition Society, 2021, , 1-11.	1.0	6
13	Systematic review with metaâ€analysis: dietary intake in adults with inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2021, 54, 742-754.	3.7	30
14	Gut Mucosal Microbiome Signatures of Colorectal Cancer Differ According to BMI Status. Frontiers in Medicine, 2021, 8, 800566.	2.6	4
15	Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Reports, 2020, 30, 2297-2305.e5.	6.4	42
16	Systematic review: gastric microbiota in health and disease. Alimentary Pharmacology and Therapeutics, 2020, 51, 582-602.	3.7	113
17	Autism Spectrum Disorder and the Gut Microbiota in Children: A Systematic Review. Annals of Nutrition and Metabolism, 2020, 76, 16-29.	1.9	61
18	Microbiome Understanding in Maternity Study (MUMS), an Australian prospective longitudinal cohort study of maternal and infant microbiota: study protocol. BMJ Open, 2020, 10, e040189.	1.9	3

#	Article	IF	CITATIONS
19	Comparative genomics and genome biology of Campylobacter showae. Emerging Microbes and Infections, 2019, 8, 827-840.	6.5	8
20	Impact of the Gastrointestinal Microbiome in Health and Disease: Co-evolution with the Host Immune System. Current Topics in Microbiology and Immunology, 2019, 421, 303-318.	1.1	24
21	A network metaâ€analysis of randomized controlled trials exploring the role of fecal microbiota transplantation in recurrent <i>Clostridium difficile</i> infection. United European Gastroenterology Journal, 2019, 7, 1051-1063.	3.8	35
22	Inflammation associated ethanolamine facilitates infection by Crohn's disease-linked adherent-invasive Escherichia coli. EBioMedicine, 2019, 43, 325-332.	6.1	42
23	Gut microbial biofilm composition and organisation holds the key to CRC. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 329-330.	17.8	14
24	Volatile organic compounds emitted from faeces as a biomarker for colorectal cancer. Alimentary Pharmacology and Therapeutics, 2019, 49, 1005-1012.	3.7	57
25	The gut virome: the â€ ⁻ missing link' between gut bacteria and host immunity?. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481983662.	3.2	127
26	The Impact of NOD2 Variants on Fecal Microbiota in Crohn's Disease and Controls Without Gastrointestinal Disease. Inflammatory Bowel Diseases, 2018, 24, 583-592.	1.9	40
27	The Effect of Vitamin D on Intestinal Inflammation and Faecal Microbiota in Patients with Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 963-972.	1.3	78
28	Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease. Microbiome, 2018, 6, 13.	11.1	94
29	Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin. Scientific Reports, 2018, 8, 6470.	3.3	18
30	Faecal microbiota transplantation as a treatment for inflammatory bowel disease: a national survey of adult and paediatric gastroenterologists in the UK. Frontline Gastroenterology, 2018, 9, 250-255.	1.8	7
31	Molecular Analysis of the Microbiome in Colorectal Cancer. Methods in Molecular Biology, 2018, 1765, 139-153.	0.9	6
32	Review article: the gut microbiome in inflammatory bowel disease—avenues for microbial management. Alimentary Pharmacology and Therapeutics, 2018, 47, 26-42.	3.7	147
33	PWE-039â€FMT as a treatment for IBD: a national survey of gastroenterologists in the UK. , 2018, , .		0
34	Novel Campylobacter concisus lipooligosaccharide is a determinant of inflammatory potential and virulence. Journal of Lipid Research, 2018, 59, 1893-1905.	4.2	4
35	Oral iron exacerbates colitis and influences the intestinal microbiome. PLoS ONE, 2018, 13, e0202460.	2.5	71
36	Other Helicobacters and the gastric microbiome. Helicobacter, 2018, 23, e12521.	3.5	5

#	Article	IF	CITATIONS
37	Comparative genomics of <i>Campylobacter concisus</i> : Analysis of clinical strains reveals genome diversity and pathogenic potential. Emerging Microbes and Infections, 2018, 7, 1-17.	6.5	25
38	Efficacy of different faecal microbiota transplantation protocols for <i>Clostridium difficile</i> infection: A systematic review and metaâ€analysis. United European Gastroenterology Journal, 2018, 6, 1232-1244.	3.8	137
39	Systematic review: ileoanal pouch microbiota in health and disease. Alimentary Pharmacology and Therapeutics, 2018, 47, 466-477.	3.7	38
40	The Effect of Lactulose on the Faecal Microbiota of Patients with Minimal Hepatic Encephalopathy. Gastroenterology, 2017, 152, S1049.	1.3	0
41	Changing molecular epidemiology of rotavirus infection after introduction of monovalent rotavirus vaccination in Scotland. Vaccine, 2017, 35, 156-163.	3.8	28
42	Screening of colorectal cancer: present and future. Expert Review of Anticancer Therapy, 2017, 17, 1131-1146.	2.4	123
43	The influence of early research experience in medical school on the decision to intercalate and future career in clinical academia: a questionnaire study. BMC Medical Education, 2017, 17, 245.	2.4	23
44	Influence of Host Gene Polymorphisms on Development of Gastroduodenal Diseases. , 2016, , 339-362.		0
45	Gastrointestinal Microbiota and Colon Cancer. Digestive Diseases, 2016, 34, 244-250.	1.9	61
46	Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides. Molecular Pharmaceutics, 2016, 13, 3334-3340.	4.6	6
47	Extending colonic mucosal microbiome analysis—assessment of colonic lavage as a proxy for endoscopic colonic biopsies. Microbiome, 2016, 4, 61.	11.1	43
48	Drug transporter gene expression in human colorectal tissue and cell lines: modulation with antiretrovirals for microbicide optimization. Journal of Antimicrobial Chemotherapy, 2016, 71, 372-386.	3.0	16
49	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	12.1	1,719
50	Cytokine gene polymorphisms, cytokine levels and the risk of colorectal neoplasia in a screened population of Northeast Scotland. European Journal of Cancer Prevention, 2015, 24, 296-304.	1.3	26
51	Microbiota organization—a key to understanding CRC development. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 128-129.	17.8	28
52	Mucosal Microbiome in Patients with Recurrent Aphthous Stomatitis. Journal of Dental Research, 2015, 94, 87S-94S.	5.2	57
53	The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes and Infection, 2015, 17, 304-310.	1.9	67
54	Expression of Genes for Drug Transporters in the Human Female Genital Tract and Modulatory Effect of Antiretroviral Drugs. PLoS ONE, 2015, 10, e0131405.	2.5	25

#	Article	IF	CITATIONS
55	First-Pass Meconium Samples from Healthy Term Vaginally-Delivered Neonates: An Analysis of the Microbiota. PLoS ONE, 2015, 10, e0133320.	2.5	134
56	The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing. PLoS ONE, 2014, 9, e88982.	2.5	236
57	Western lifestyle: a â€~master' manipulator of the intestinal microbiota?. Gut, 2014, 63, 5-6.	12.1	46
58	Expression of Drug Transporters in Cervicovaginal Cell Lines and Modulatory Effect of Candidate Anti-retroviral Microbicides. AIDS Research and Human Retroviruses, 2014, 30, A201-A201.	1.1	1
59	MicroRNAs in gastrointestinal malignancy. European Journal of Cancer Prevention, 2014, 23, 540-549.	1.3	4
60	Two-stage Genome-wide Methylation Profiling in Childhood-onset Crohn's Disease Implicates Epigenetic Alterations at the VMP1/MIR21 and HLA Loci. Inflammatory Bowel Diseases, 2014, 20, 1784-1793.	1.9	84
61	Anticancer effects of bioactive berry compounds. Phytochemistry Reviews, 2014, 13, 295-322.	6.5	91
62	Characterisation of Drug Transporter Gene Expression in Colorectal Tissue and Cell Lines: Induction with Anti-retrovirals for Microbicide Optimization. AIDS Research and Human Retroviruses, 2014, 30, A201-A201.	1.1	1
63	The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 2014, 12, 661-672.	28.6	2,007
64	The gut microbiota, dietary extremes and exercise. Gut, 2014, 63, 1838-1839.	12.1	41
65	946 Genome-Wide Analysis of DNA Methylation in Low-Grade Colorectal Adenomas and Normal Colonic Mucosa. Gastroenterology, 2014, 146, S-165.	1.3	0
66	Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years?. World Journal of Gastroenterology, 2014, 20, 1192.	3.3	293
67	The TLR4 D299G and T399I SNPs Are Constitutively Active to Up-Regulate Expression of Trif-Dependent Genes. PLoS ONE, 2014, 9, e111460.	2.5	19
68	Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host and Microbe, 2013, 14, 207-215.	11.0	1,913
69	Sa1972 Assessment of Bacterial Diversity in Colorectal Adenomatous Polyps. Gastroenterology, 2013, 144, S-348.	1.3	1
70	Expression of neutrophil gelatinase-associated lipocalin in colorectal neoplastic progression: a marker of malignant potential?. British Journal of Cancer, 2013, 108, 2537-2541.	6.4	17
71	The Microaerophilic Microbiota of De-Novo Paediatric Inflammatory Bowel Disease: The BISCUIT Study. PLoS ONE, 2013, 8, e58825.	2.5	63
72	Genetic variation in C20orf54, PLCE1 and MUC1 and the risk of upper gastrointestinal cancers in Caucasian populations. European Journal of Cancer Prevention, 2012, 21, 541-544.	1.3	72

#	Article	IF	CITATIONS
73	Microbiota of De-Novo Pediatric IBD: Increased Faecalibacterium Prausnitzii and Reduced Bacterial Diversity in Crohn's But Not in Ulcerative Colitis. American Journal of Gastroenterology, 2012, 107, 1913-1922.	0.4	245
74	Mo1584 Genetic Variation in C20orf54, PLCE1 and MUC1 and Risk of Upper Gastrointestinal Cancers in Caucasian Populations. Gastroenterology, 2012, 142, S-634.	1.3	1
75	Lack of association between the rs2294008 polymorphism in the prostate stem cell antigen gene and colorectal neoplasia: a case-control and immunohistochemical study. BMC Research Notes, 2012, 5, 371.	1.4	9
76	Vacuolating Cytotoxin and Variants in Atg16L1 That Disrupt Autophagy Promote Helicobacter pylori Infection in Humans. Gastroenterology, 2012, 142, 1160-1171.	1.3	190
77	IBD—what role do Proteobacteria play?. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 219-230.	17.8	587
78	Development of real-time PCR assays for the detection of Atlantic cod (Gadus morhua), Atlantic salmon (Salmo salar) and European plaice (Pleuronectes platessa) in complex food samples. European Food Research and Technology, 2012, 234, 127-136.	3.3	16
79	Detection of Campylobacter Concisus in Colonic Biopsies From Adult Patients With Ulcerative Colitis. Gastroenterology, 2011, 140, S-268.	1.3	0
80	Genetic Variation in the Prostate Stem Cell Antigen Gene and Upper Gastrointestinal Cancer in White Individuals. Gastroenterology, 2011, 140, 435-441.	1.3	70
81	Bacterial Diversity of the Colonic Microbiota in De-Novo Extensive Paediatric Ulcerative Colitis by Next-Generation Sequencing. Gastroenterology, 2011, 140, S-196.	1.3	0
82	The Molecular Basis of Lipid A and Toll-Like Receptor 4 Interactions. , 2011, , 371-387.		9
83	Bilirubin Has Anti-Bacterial Properties Against Gram-Positive Bacteria: A Potential Benefit of Physiological Jaundice?. Gastroenterology, 2011, 140, S-941.	1.3	2
84	The Role of the Microaerophilic Colonic Microbiota in De-Novo Paediatric Inflammatory Bowel Disease. Gastroenterology, 2011, 140, S-512.	1.3	0
85	The Inflammatory Microenvironment in Colorectal Neoplasia. PLoS ONE, 2011, 6, e15366.	2.5	151
86	Detection of Campylobacter concisus and Other Campylobacter Species in Colonic Biopsies from Adults with Ulcerative Colitis. PLoS ONE, 2011, 6, e21490.	2.5	124
87	Colonic mucosal bacterial diversity of de novo extensive paediatric ulcerative colitis by next-generation sequencing. Gut, 2011, 60, A146-A147.	12.1	4
88	Detection of campylobacter concisus in colonic biopsies from adult patients with ulcerative colitis. Gut, 2011, 60, A211-A211.	12.1	0
89	The role of microaerophilic colonic mucosal bacteria in de novo paediatric inflammatory bowel disease. Gut, 2011, 60, A147-A147.	12.1	3
90	Possible association between a genetic polymorphism at 8q24 and risk of upper gastrointestinal cancer. European Journal of Cancer Prevention, 2011, 20, 54-57.	1.3	15

#	Article	IF	CITATIONS
91	Could Helicobacter organisms cause inflammatory bowel disease?. FEMS Immunology and Medical Microbiology, 2011, 61, 1-14.	2.7	73
92	The Other Helicobacters. Helicobacter, 2011, 16, 70-75.	3.5	11
93	Biochemical Characterization of Sinorhizobium meliloti Mutants Reveals Gene Products Involved in the Biosynthesis of the Unusual Lipid A Very Long-chain Fatty Acid. Journal of Biological Chemistry, 2011, 286, 17455-17466.	3.4	19
94	Innate Immune Sensors and Gastrointestinal Bacterial Infections. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	14
95	Enterohepatic Helicobacter in Ulcerative Colitis: Potential Pathogenic Entities?. PLoS ONE, 2011, 6, e17184.	2.5	75
96	A Comprehensive Evaluation of Colonic Mucosal Isolates of Sutterella wadsworthensis from Inflammatory Bowel Disease. PLoS ONE, 2011, 6, e27076.	2.5	76
97	PP-012â€Cytokine gene polymorphisms, cytokine levels and risk of colorectal neoplasia in the screened population of northeast Scotland. Gut, 2010, 59, A44.3-A45.	12.1	0
98	OC-048â€Impact of the TLR4 Asp299gly polymorphism on induction of the inflammatory response followingHelicobacter pyloriinfection. Gut, 2010, 59, A20.1-A20.	12.1	0
99	The role of infection in the aetiology of inflammatory bowel disease. Journal of Gastroenterology, 2010, 45, 266-276.	5.1	104
100	OC-053â€Can <i>Helicobacter pylori</i> lipopolysaccharide lipid a composition affect its ability to induce an inflammatory response through Toll-like receptor 4: Abstract OC-053. Gut, 2010, 59, A22.1-A22.	12.1	0
101	Increase in NF-κB Binding Affinity of the Variant C Allele of the Toll-Like Receptor 9 â^1237T/C Polymorphism Is Associated with Helicobacter pylori -Induced Gastric Disease. Infection and Immunity, 2010, 78, 1345-1352.	2.2	93
102	S1640 Can Helicobacter pylori Lipopolysaccharide Lipid a Composition Affect Its Ability to Induce an Inflammatory Response Through Toll Like Receptor 4. Gastroenterology, 2010, 138, S-244.	1.3	0
103	T2009 Assessment of Novel Genetic Polymorphisms and Risk of Upper Gastrointestinal Carcinoma. Gastroenterology, 2010, 138, S-612.	1.3	0
104	W1738 Role of TLR4 in Carcinogenesis and Tumor Progression of Colorectal Cancer. Gastroenterology, 2010, 138, S-730.	1.3	0
105	S1641 Impact of the TLR4 Asp299Gly Polymorphism on Induction of the Inflammatory Response Following H. pylori Infection. Gastroenterology, 2010, 138, S-244.	1.3	0
106	T2012 Cytokine Gene Polymorphisms, Cytokine Levels and Risk of Colorectal Neoplasia in the Screened Population of Northeast Scotland. Gastroenterology, 2010, 138, S-613.	1.3	0
107	Role of host genetics in fibrosis. Fibrogenesis and Tissue Repair, 2009, 2, 6.	3.4	35
108	CD14-159C/T and TLR9-1237T/C polymorphisms are not associated with gastric cancer risk in Caucasian populations. European Journal of Cancer Prevention, 2009, 18, 117-119.	1.3	46

#	Article	IF	CITATIONS
109	Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene, 2008, 27, 244-252.	5.9	218
110	COXâ€2 expression in sporadic colorectal adenomatous polyps is linked to adenoma characteristics. Histopathology, 2008, 52, 806-815.	2.9	26
111	Genetic aspects of inflammation and cancer. Biochemical Journal, 2008, 410, 225-235.	3.7	116
112	W1208 Variable Detection of Entero-Hepatic Helicobacter Species in Colonic Mucosal Pinch Biopsies By Different Molecular Techniques. Gastroenterology, 2008, 134, A-655.	1.3	3
113	A Functional Polymorphism of Toll-Like Receptor 4 Gene Increases Risk of Gastric Carcinoma and Its Precursors. Gastroenterology, 2007, 132, 905-912.	1.3	247
114	Sporadic colorectal cancer – role of the commensal microbiota. FEMS Microbiology Letters, 2005, 244, 1-7.	1.8	104
115	Role of the polymorphic ILâ€1B , ILâ€1RN and TNFâ€A genes in distal gastric cancer in Mexico. International Journal of Cancer, 2005, 114, 237-241.	5.1	117
116	Development of a method for the quantification of haddock (Melanogrammus aeglefinus) in commercial products using real-time PCR. European Food Research and Technology, 2005, 220, 633-637.	3.3	45
117	The Role of Cytokine Gene Polymorphisms in Colorectal Cancer and Their Interaction with Aspirin Use in the Northeast of Scotland. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 1613-1618.	2.5	75
118	Isolation, growth on prebiotics and probiotic potential of novel bifidobacteria from pigs. Anaerobe, 2004, 10, 33-39.	2.1	19
119	Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. American Journal of Physiology - Renal Physiology, 2004, 286, G515-G520.	3.4	302
120	Identification of gadoid fish species using DNA-based techniques. European Food Research and Technology, 2003, 217, 259-264.	3.3	48
121	Gastric cancer relatives have a high prevalence of IL-18 and TGF-B1 proinflammatory genotypes. Gastroenterology, 2003, 124, A6.	1.3	0
122	A functional toll-like receptor 4 polymorphism increases risk of H. pylori-induced premalignant changes. Gastroenterology, 2003, 124, A19-A20.	1.3	6
123	Role of interleukin-1 beta and other potential genetic markers as indicators of gastric cancer risk. , 2003, , 215-223.		0
124	Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 1901-1906.	1.7	69
125	Oligonucleotide Probes That Detect Quantitatively Significant Groups of Butyrate-Producing Bacteria in Human Feces. Applied and Environmental Microbiology, 2003, 69, 4320-4324.	3.1	284
126	Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1615-1620.	1.7	102

#	Article	IF	CITATIONS
127	Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 2141-2146.	1.7	122
128	Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1615-1620.	1.7	285
129	Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 2141-2146.	1.7	479
130	Anaerostipes caccae gen. nov., sp. nov., a New Saccharolytic, Acetate-utilising, Butyrate-producing Bacterium from Human Faeces. Systematic and Applied Microbiology, 2002, 25, 46-51.	2.8	150
131	Differentiation of raw or processed eel by PCR-based techniques: restriction fragment length polymorphism analysis (RFLP) and single strand conformation polymorphism analysis (SSCP). European Food Research and Technology, 2002, 214, 171-177.	3.3	36
132	Identification of Cephalopod Species (Ommastrephidae and Loliginidae) in Seafood Products by Forensically Informative Nucleotide Sequencing (FINS). Journal of Food Science, 2002, 67, 1672-1676.	3.1	58
133	The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters, 2002, 217, 133-139.	1.8	1,105
134	Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiology Ecology, 2002, 39, 33-39.	2.7	324
135	Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiology Ecology, 2002, 39, 33-39.	2.7	3
136	The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters, 2002, 217, 133-139.	1.8	24
137	Development of a DNA-Based Method Aimed at Identifying the Fish Species Present in Food Products. Journal of Agricultural and Food Chemistry, 2001, 49, 1175-1179.	5.2	60
138	Identification of Hake Species (MerlucciusGenus) Using Sequencing and PCRâ^'RFLP Analysis of Mitochondrial DNA Control Region Sequences. Journal of Agricultural and Food Chemistry, 2001, 49, 5108-5114.	5.2	70
139	Identification of Flatfish (Pleuronectiforme) Species Using DNA-Based Techniques. Journal of Agricultural and Food Chemistry, 2001, 49, 4562-4569.	5.2	60
140	Validation of a PCR-RFLP based method for the identification of salmon species in food products. European Food Research and Technology, 2001, 212, 385-389.	3.3	36
141	Comparison of paralytic shellfish toxin (PST) production by the dinoflagellates Alexandrium lusitanicum NEPCC 253 and Alexandrium tamarense NEPCC 407 in the presence and absence of bacteria. FEMS Microbiology Ecology, 2001, 36, 223-234.	2.7	77
142	Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiology Ecology, 2001, 37, 161-173.	2.7	126
143	Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiology Ecology, 2001, 37, 161-173.	2.7	7
144	Comparison of paralytic shellfish toxin (PST) production by the dinoflagellates Alexandrium lusitanicum NEPCC 253 and Alexandrium tamarense NEPCC 407 in the presence and absence of bacteria. FEMS Microbiology Ecology, 2001, 36, 223-234.	2.7	0

#	Article	IF	CITATIONS
145	Use of Restriction Fragment Length Polymorphism To Distinguish between Salmon Species. Journal of Agricultural and Food Chemistry, 2000, 48, 2184-2188.	5.2	115