Markus Grebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1230888/publications.pdf

Version: 2024-02-01

201674 189892 4,741 49 27 50 citations h-index g-index papers 51 51 51 4639 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coordinated Polar Localization of Auxin Efflux Carrier PIN1 by GNOM ARF GEF. Science, 1999, 286, 316-318.	12.6	754
2	An Auxin Gradient and Maximum in the <i> Arabidopsis < /i > Root Apex Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. Plant Cell, 2009, 21, 1659-1668.</i>	6.6	439
3	Arabidopsis Sterol Endocytosis Involves Actin-Mediated Trafficking via ARA6-Positive Early Endosomes. Current Biology, 2003, 13, 1378-1387.	3.9	390
4	Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biology, 2005, 7, 1224-1231.	10.3	333
5	Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biology, 2008, 10, 237-244.	10.3	313
6	Cell Polarity and PIN Protein Positioning in Arabidopsis Require STEROL METHYLTRANSFERASE1 Function. Plant Cell, 2003, 15, 612-625.	6.6	260
7	Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. Journal of Cell Biology, 2001, 155, 239-250.	5.2	166
8	The Endoplasmic Reticulum Is the Main Membrane Source for Biogenesis of the Lytic Vacuole in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 3434-3449.	6.6	162
9	The patterning of epidermal hairs in Arabidopsisâ€"updated. Current Opinion in Plant Biology, 2012, 15, 31-37.	7.1	154
10	Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis. Nature Cell Biology, 2009, 11, 731-738.	10.3	153
11	Vectorial Information for Arabidopsis Planar Polarity Is Mediated by Combined AUX1, EIN2, and GNOM Activity. Current Biology, 2006, 16, 2143-2149.	3.9	141
12	Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO Journal, 2010, 29, 546-558.	7.8	132
13	Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway. Current Biology, 2002, 12, 329-334.	3.9	131
14	Conserved <i>Arabidopsis</i> ECHIDNA protein mediates <i>trans</i> â€"Golgi-network trafficking and cell elongation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8048-8053.	7.1	130
15	A Conserved Domain of the Arabidopsis GNOM Protein Mediates Subunit Interaction and Cyclophilin 5 Binding. Plant Cell, 2000, 12, 343-356.	6.6	128
16	Cellular processes relying on sterol function in plants. Current Opinion in Plant Biology, 2009, 12, 705-713.	7.1	96
17	Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nature Communications, 2013, 4, 2779.	12.8	60
18	Lipid function in plant cell polarity. Current Opinion in Plant Biology, 2004, 7, 670-676.	7.1	56

#	Article	IF	CITATIONS
19	Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity. Nature Plants, 2015, 1, 15162.	9.3	52
20	Regulating plant physiology with organic electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4597-4602.	7.1	51
21	A Framework for Lateral Membrane Trafficking and Polar Tethering of the PEN3 ATP-Binding Cassette Transporter. Plant Physiology, 2016, 172, 2245-2260.	4.8	49
22	Mechanisms of auxin-dependent cell and tissue polarity. Current Opinion in Plant Biology, 2007, 10, 616-623.	7.1	46
23	Ups and downs of tissue and planar polarity in plants. BioEssays, 2004, 26, 719-729.	2.5	45
24	Apical–basal polarity: why plant cells don't standon their heads. Trends in Plant Science, 2006, 11, 12-14.	8.8	37
25	Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thaliana. BMC Plant Biology, 2008, 8, 57.	3.6	37
26	Fluorescent in situ visualization of sterols in Arabidopsis roots. Nature Protocols, 2011, 6, 446-456.	12.0	36
27	Outer, inner and planar polarity in the Arabidopsis root. Current Opinion in Plant Biology, 2018, 41, 46-53.	7.1	36
28	Planar polarity, tissue polarity and planar morphogenesis in plants. Current Opinion in Plant Biology, 2012, 15, 593-600.	7.1	29
29	<i>Arabidopsis AIP1-2</i> restricted by <i>WER</i> -mediated patterning modulates planar polarity. Development (Cambridge), 2015, 142, 151-161.	2.5	29
30	Establishment of cell polarity during early plant development. Current Opinion in Cell Biology, 1997, 9, 849-852.	5.4	28
31	High lipid order of Arabidopsis cellâ€plate membranes mediated by sterol and DYNAMINâ€RELATED PROTEIN1A function. Plant Journal, 2014, 80, 745-757.	5.7	28
32	Cellulose synthesis during cell plate assembly. Physiologia Plantarum, 2018, 164, 17-26.	5.2	27
33	Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells. Plant Physiology, 2018, 176, 378-391.	4.8	27
34	Rho-of-plant-activated root hair formation requires <i>Arabidopsis YIP4a/b</i> gene function. Development (Cambridge), 2019, 146, .	2.5	25
35	Cell axiality and polarity in plants — adding pieces to the puzzle. Current Opinion in Plant Biology, 2001, 4, 520-526.	7.1	19
36	PLANT BIOLOGY: Enhanced: Growth by Auxin: When a Weed Needs Acid. Science, 2005, 310, 60-61.	12.6	19

#	Article	IF	CITATIONS
37	Unveiling the Casparian strip. Nature, 2011, 473, 294-295.	27.8	17
38	Immunocytochemical Fluorescent In Situ Visualization of Proteins In Arabidopsis. Methods in Molecular Biology, 2014, 1062, 453-472.	0.9	16
39	SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana. Physiologia Plantarum, 2015, 153, 440-453.	5.2	14
40	Arabidopsis BTB/POZ protein-dependent PENETRATION3 trafficking and disease susceptibility. Nature Plants, 2017, 3, 854-858.	9.3	14
41	A Model Analysis of Mechanisms for Radial Microtubular Patterns at Root Hair Initiation Sites. Frontiers in Plant Science, 2016, 7, 1560.	3.6	10
42	A Conserved Domain of the Arabidopsis GNOM Protein Mediates Subunit Interaction and Cyclophilin 5 Binding. Plant Cell, 2000, 12, 343.	6.6	8
43	Sterol Dynamics During Endocytic Trafficking in Arabidopsis. Methods in Molecular Biology, 2014, 1209, 13-29.	0.9	8
44	Cell Polarity: Lateral Perspectives. Current Biology, 2010, 20, R446-R448.	3.9	7
45	Out of the shade and into the light. Nature Cell Biology, 2011, 13, 347-349.	10.3	7
46	Membrane Sterol Composition in Arabidopsis thaliana Affects Root Elongation via Auxin Biosynthesis. International Journal of Molecular Sciences, 2021, 22, 437.	4.1	7
47	Ratiometric Fluorescence Live Imaging Analysis of Membrane Lipid Order in Arabidopsis Mitotic Cells Using a Lipid Order-Sensitive Probe. Methods in Molecular Biology, 2016, 1370, 227-239.	0.9	7
48	Auxin Paves the Way for Planar Morphogenesis. Cell, 2010, 143, 29-31.	28.9	4
49	Plant cell biology: PIN polarity maintained. Current Biology, 2021, 31, R449-R451.	3.9	3