
Raffaella Lombardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppression of canonical Wnt/Â-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. Journal of Clinical Investigation, 2006, 116, 2012-2021.	8.2	519
2	The Hippo Pathway Is Activated and Is a Causal Mechanism for Adipogenesis in Arrhythmogenic Cardiomyopathy. Circulation Research, 2014, 114, 454-468.	4.5	227
3	Myocardial Collagen Turnover in Hypertrophic Cardiomyopathy. Circulation, 2003, 108, 1455-1460.	1.6	185
4	Myozenin 2 Is a Novel Gene for Human Hypertrophic Cardiomyopathy. Circulation Research, 2007, 100, 766-768.	4.5	168
5	Nuclear Plakoglobin Is Essential for Differentiation of Cardiac Progenitor Cells to Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation Research, 2011, 109, 1342-1353.	4.5	145
6	Genetic Fate Mapping Identifies Second Heart Field Progenitor Cells As a Source of Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation Research, 2009, 104, 1076-1084.	4.5	135
7	Human Molecular Genetic and Functional Studies Identify <i>TRIM63</i> , Encoding Muscle RING Finger Protein 1, as a Novel Gene for Human Hypertrophic Cardiomyopathy. Circulation Research, 2012, 111, 907-919.	4.5	117
8	Determinants of atrial fibrillation development in patients with hypertrophic cardiomyopathy. American Journal of Cardiology, 2004, 94, 895-900.	1.6	114
9	Resolution of Established Cardiac Hypertrophy and Fibrosis and Prevention of Systolic Dysfunction in a Transgenic Rabbit Model of Human Cardiomyopathy Through Thiol-Sensitive Mechanisms. Circulation, 2009, 119, 1398-1407.	1.6	106
10	Antifibrotic Effects of Antioxidant N-Acetylcysteine in a Mouse Model of Human Hypertrophic Cardiomyopathy Mutation. Journal of the American College of Cardiology, 2006, 47, 827-834.	2.8	105
11	DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circulation Research, 2019, 124, 856-873.	4.5	95
12	Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circulation Research, 2016, 119, 41-54.	4.5	85
13	Hemodynamic determinants of exercise-induced abnormal blood pressure response in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 2002, 40, 278-284.	2.8	80
14	Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. European Journal of Clinical Investigation, 2011, 41, 527-538.	3.4	79
15	Exercise capacity in hypertrophic cardiomyopathy depends on left ventricular diastolic function. American Journal of Cardiology, 1999, 84, 309-315.	1.6	75
16	Genome-wide mapping of modifier chromosomal loci for human hypertrophic cardiomyopathy. Human Molecular Genetics, 2007, 16, 2463-2471.	2.9	74
17	Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies. Cardiovascular Research, 2008, 79, 109-117.	3.8	54
18	Suppression of Activated FOXO Transcription Factors in the Heart Prolongs Survival in a Mouse Model of Laminopathies. Circulation Research, 2018, 122, 678-692.	4.5	54

RAFFAELLA LOMBARDI

#	Article	IF	CITATIONS
19	Enhanced Transmural Fiber Rotation and Connexin 43 Heterogeneity Are Associated With an Increased Upper Limit of Vulnerability in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation Research, 2007, 101, 1049-1057.	4.5	50
20	Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis. BMC Medical Genetics, 2009, 10, 111.	2.1	43
21	Molecular Genetics and Pathogenesis of Arrhythmogenic Right Ventricular Cardiomyopathy: A Disease of Cardiac Stem Cells. Pediatric Cardiology, 2011, 32, 360-365.	1.3	43
22	Knockdown of Plakophilin 2 Downregulates miR-184 Through CpG Hypermethylation and Suppression of the E2F1 Pathway and Leads to Enhanced Adipogenesis In Vitro. Circulation Research, 2016, 119, 731-750.	4.5	43
23	Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity. Cardiovascular Research, 2013, 97, 44-54.	3.8	39
24	Atorvastatin and cardiac hypertrophy and function in hypertrophic cardiomyopathy: a pilot study. European Journal of Clinical Investigation, 2010, 40, 976-983.	3.4	36
25	Arrhythmogenic right ventricular cardiomyopathy is a disease of cardiac stem cells. Current Opinion in Cardiology, 2010, 25, 222-228.	1.8	30
26	Distinct Cellular Basis for Early Cardiac Arrhythmias, the Cardinal Manifestation of Arrhythmogenic Cardiomyopathy, and the Skin Phenotype of Cardiocutaneous Syndromes. Circulation Research, 2017, 121, 1346-1359.	4.5	26
27	Haploinsufficiency of <i>Tmem43</i> in cardiac myocytes activates the DNA damage response pathway leading to a late-onset senescence-associated pro-fibrotic cardiomyopathy. Cardiovascular Research, 2021, 117, 2377-2394.	3.8	25
28	Established and Emerging Mechanisms in the Pathogenesis of Arrhythmogenic Cardiomyopathy: A Multifaceted Disease. International Journal of Molecular Sciences, 2020, 21, 6320.	4.1	19
29	Knock Down of Plakophillin 2 Dysregulates Adhesion Pathway through Upregulation of miR200b and Alters the Mechanical Properties in Cardiac Cells. Cells, 2019, 8, 1639.	4.1	18
30	Comparison of hemodynamic adaptation to orthostatic stress in patients with hypertrophic cardiomyopathy with or without syncope and in vasovagal syncope. American Journal of Cardiology, 2002, 89, 1405-1410.	1.6	17
31	Abnormal blood-pressure response to exercise and oxygen consumption in patients with hypertrophic cardiomyopathy. Journal of Nuclear Cardiology, 2007, 14, 869-875.	2.1	15
32	Genetics and sudden death. Current Opinion in Cardiology, 2013, 28, 272-281.	1.8	13
33	Myocardial Texture in Hypertrophic Cardiomyopathy. Journal of the American Society of Echocardiography, 2007, 20, 1253-1259.	2.8	12
34	Left Ventricular Mass in Hypertrophic Cardiomyopathy Assessed by 2D-Echocardiography: Validation with Magnetic Resonance Imaging. Journal of Cardiovascular Translational Research, 2020, 13, 238-244.	2.4	12
35	Activation of PDGFRA signaling contributes to filamin C–related arrhythmogenic cardiomyopathy. Science Advances, 2022, 8, eabk0052.	10.3	12
36	Dobutamine Stress Echocardiography in Hypertrophic Cardiomyopathy. Cardiology, 2003, 100, 93-100.	1.4	11

RAFFAELLA LOMBARDI

#	Article	IF	CITATIONS
37	Speckle-tracking analysis based on 2D echocardiography does not reliably measure left ventricular torsion. Clinical Physiology and Functional Imaging, 2013, 33, 117-121.	1.2	10
38	Hemodynamic effects of isometric exercise in hypertrophic cardiomyopathy: Comparison with normal subjects. Journal of Nuclear Cardiology, 2003, 10, 154-160.	2.1	9
39	Identification of Genes and Pathways Regulated by Lamin A in Heart. Journal of the American Heart Association, 2020, 9, e015690.	3.7	9
40	Arrhythmogenic Cardiomyopathy and Skeletal Muscle Dystrophies: Shared Histopathological Features and Pathogenic Mechanisms. Frontiers in Physiology, 2020, 11, 834.	2.8	5
41	Effect of hypertrophy on left ventricular diastolic function in patients with hypertrophic cardiomyopathy. Heart International, 2006, 2, 106.	1.4	4
42	Percutaneous treatment of patients with heart diseases: selection, guidance and follow-up. A review. Cardiovascular Ultrasound, 2012, 10, 16.	1.6	2
43	Editorial of Special Issue "Genetics and Molecular Pathogenesis of Non-Ischemic Cardiomyopathiesâ€. International Journal of Molecular Sciences, 2020, 21, 9398.	4.1	2
44	Effect of Hypertrophy on Left Ventricular Diastolic Function in Patients with Hypertrophic Cardiomyopathy. Heart International, 2006, 2, 182618680600200.	1.4	0
45	Clinical Significance of Diastolic Dysfunction and the Effect of Therapeutic Interventions. , 0, , 147-157.		0