
Daniel J Bonthius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1230564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purkinje cell-specific deletion of CREB worsens alcohol-induced cerebellar neuronal losses and motor deficits. Alcohol, 2022, , .	1.7	1
2	Fatal Acute Hemorrhagic Leukoencephalitis Following Immunization Against Human Papillomavirus in a 14-Year-Old Boy. Child Neurology Open, 2021, 8, 2329048X2110161.	1.1	4
3	Drug-Drug Interactions Between Cannabidiol and Lithium. Child Neurology Open, 2020, 7, 2329048X2094789.	1.1	10
4	Viral Strain Determines Disease Symptoms, Pathology, and Immune Response in Neonatal Rats with Lymphocytic Choriomeningitis Virus Infection. Viruses, 2019, 11, 552.	3.3	7
5	Severe Herpes Zoster Following Varicella Vaccination in Immunocompetent Young Children. Journal of Child Neurology, 2019, 34, 184-188.	1.4	31
6	Regional Patterns of Alcoholâ€induced Neuronal Loss Depend on Genetics: Implications for Fetal Alcohol Spectrum Disorder. Alcoholism: Clinical and Experimental Research, 2018, 42, 1627-1639.	2.4	3
7	Viral Infections of the Nervous System. , 2017, , 895-906.		2
8	T-Cells Underlie Some but Not All of the Cerebellar Pathology in a Neonatal Rat Model of Congenital Lymphocytic Choriomeningitis Virus Infection. Journal of Neuropathology and Experimental Neurology, 2016, 75, 1031-1047.	1.7	3
9	Defensive Perimeter in the Central Nervous System: Predominance of Astrocytes and Astrogliosis during Recovery from Varicella-Zoster Virus Encephalitis. Journal of Virology, 2016, 90, 379-391.	3.4	13
10	Alexander Disease. Journal of Child Neurology, 2016, 31, 869-872.	1.4	11
11	The Arenaviruses. , 2016, , 149-174.		5
12	Stem cells and their potential therapeutic use in subacute sclerosing panencephalitis. Developmental Medicine and Child Neurology, 2015, 57, 796-797.	2.1	0
13	Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia, 2015, 63, 1694-1713.	4.9	69
14	Genetic Absence of nNOS Worsens Fetal Alcohol Effects in Mice. II: Microencephaly and Neuronal Losses. Alcoholism: Clinical and Experimental Research, 2015, 39, 221-231.	2.4	20
15	The Neuronal Nitric Oxide Synthase (nNOS) Gene and Neuroprotection Against Alcohol Toxicity. Cellular and Molecular Neurobiology, 2015, 35, 449-461.	3.3	16
16	Genetic Absence of <scp>nNOS</scp> Worsens Fetal Alcohol Effects in Mice. I: Behavioral Deficits. Alcoholism: Clinical and Experimental Research, 2015, 39, 212-220.	2.4	7
17	Importance of genetics in fetal alcohol effects: Null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits. NeuroToxicology, 2015, 46, 60-72.	3.0	29
18	Lymphocytic Choriomeningitis Virus: An Underrecognized Cause of Neurologic Disease in the Fetus, Child, and Adult. Seminars in Pediatric Neurology, 2012, 19, 89-95.	2.0	157

DANIEL J BONTHIUS

#	Article	IF	CITATIONS
19	Measles Virus and Associated Central Nervous System Sequelae. Seminars in Pediatric Neurology, 2012, 19, 107-114.	2.0	118
20	Introduction. Seminars in Pediatric Neurology, 2012, 19, 87-88.	2.0	2
21	Ataxia and the Cerebellum. Seminars in Pediatric Neurology, 2011, 18, 69-71.	2.0	4
22	Nitric oxide utilizes NF-κB to signal its neuroprotective effect against alcohol toxicity. Neuropharmacology, 2009, 56, 716-731.	4.1	35
23	Lymphocytic Choriomeningitis Virus: A Prenatal and Postnatal Threat. Advances in Pediatrics, 2009, 56, 75-86.	1.4	40
24	A single exposure to alcohol during brain development induces microencephaly and neuronal losses in genetically susceptible mice, but not in wild type mice. NeuroToxicology, 2009, 30, 459-470.	3.0	34
25	Maturationâ€Dependent Alcohol Resistance in the Developing Mouse: Cerebellar Neuronal Loss and Gene Expression During Alcoholâ€Vulnerable and â€Resistant Periods. Alcoholism: Clinical and Experimental Research, 2008, 32, 1439-1450.	2.4	32
26	The protective effect of neuronal nitric oxide synthase (nNOS) against alcohol toxicity depends upon the NO-cGMP-PKG pathway and NF-κB. NeuroToxicology, 2008, 29, 1080-1091.	3.0	36
27	Arenaviruses. , 2008, , 135-150.		3
28	Congenital Viral Infections of the Brain: Lessons Learned from Lymphocytic Choriomeningitis Virus in the Neonatal Rat. PLoS Pathogens, 2007, 3, e149.	4.7	59
29	Congenital lymphocytic choriomeningitis virus infection: spectrum of disease. Annals of Neurology, 2007, 62, 347-355.	5.3	100
30	Lymphocytic choriomeningitis virus infection of the developing brain: critical role of host age. Annals of Neurology, 2007, 62, 356-374.	5.3	48
31	Stimulation of the cAMP pathway protects cultured cerebellar granule neurons against alcohol-induced cell death by activating the neuronal nitric oxide synthase (nNOS) gene. Brain Research, 2007, 1143, 34-45.	2.2	32
32	Severe alcohol-induced neuronal deficits in the hippocampus and neocortex of neonatal mice genetically deficient for neuronal nitric oxide synthase (nNOS). Journal of Comparative Neurology, 2006, 499, 290-305.	1.6	24
33	Pathology of the Insular Cortex in Alzheimer Disease Depends on Cortical Architecture. Journal of Neuropathology and Experimental Neurology, 2005, 64, 910-922.	1.7	87
34	The NO-cGMP-PKG pathway plays an essential role in the acquisition of ethanol resistance by cerebellar granule neurons. Neurotoxicology and Teratology, 2004, 26, 47-57.	2.4	36
35	Use of frozen sections to determine neuronal number in the murine hippocampus and neocortex using the optical disector and optical fractionator. Brain Research Protocols, 2004, 14, 45-57.	1.6	75
36	Sydenham's chorea: Not gone and not forgotten. Seminars in Pediatric Neurology, 2003, 10, 11-19.	2.0	35

DANIEL J BONTHIUS

#	Article	IF	CITATIONS
37	FGF-2, NGF and IGF-1, but not BDNF, utilize a nitric oxide pathway to signal neurotrophic and neuroprotective effects against alcohol toxicity in cerebellar granule cell cultures. Developmental Brain Research, 2003, 140, 15-28.	1.7	87
38	Critical Role for Glial Cells in the Propagation and Spread of Lymphocytic Choriomeningitis Virus in the Developing Rat Brain. Journal of Virology, 2002, 76, 6618-6635.	3.4	49
39	Meningitis and encephalitis in children. Neurologic Clinics, 2002, 20, 1013-1038.	1.8	40
40	Deficiency of neuronal nitric oxide synthase (nNOS) worsens alcohol-induced microencephaly and neuronal loss in developing mice. Developmental Brain Research, 2002, 138, 45-59.	1.7	64
41	Reduced Seizure Threshold and Hippocampal Cell Loss in Rats Exposed to Alcohol During the Brain Growth Spurt. Alcoholism: Clinical and Experimental Research, 2001, 25, 70-82.	2.4	70
42	Alcohol Exposure During the Brain Growth Spurt Promotes Hippocampal Seizures, Rapid Kindling, and Spreading Depression. Alcoholism: Clinical and Experimental Research, 2001, 25, 734-745.	2.4	45
43	Reduced Seizure Threshold and Hippocampal Cell Loss in Rats Exposed to Alcohol During the Brain Growth Spurt. Alcoholism: Clinical and Experimental Research, 2001, 25, 70-82.	2.4	4
44	Alcohol Exposure During the Brain Growth Spurt Promotes Hippocampal Seizures, Rapid Kindling, and Spreading Depression. Alcoholism: Clinical and Experimental Research, 2001, 25, 734-745.	2.4	1
45	Alcohol exposure during the brain growth spurt promotes hippocampal seizures, rapid kindling, and spreading depression. Alcoholism: Clinical and Experimental Research, 2001, 25, 734-45.	2.4	16
46	Subacute Sclerosing Panencephalitis, a Measles Complication, in an Internationally Adopted Child. Emerging Infectious Diseases, 2000, 6, 377-381.	4.3	19
47	The role of extracellular ionic changes in upregulating the mRNA for glial fibrillary acidic protein following spreading depression. Brain Research, 1995, 674, 314-328.	2.2	19
48	Spreading depression and reverberatory seizures induce the upregulation of mRNA for glial fibrillary acidic protein. Brain Research, 1994, 645, 215-224.	2.2	26
49	Induction of cortical spreading depression with potassium chloride upregulates levels of messenger RNA for glial fibrillary acidic protein in cortex and hippocampus: inhibition by MK-801. Brain Research, 1993, 618, 83-94.	2.2	58
50	Early postnatal alcohol exposure acutely and permanently reduces the number of granule cells and mitral cells in the rat olfactory bulb: A stereological study. Journal of Comparative Neurology, 1992, 324, 557-566.	1.6	99
51	Acute and long-term neuronal deficits in the rat olfactory bulb following alcohol exposure during the brain growth spurt. Neurotoxicology and Teratology, 1991, 13, 611-619.	2.4	44
52	Permanent neuronal deficits in rats exposed to alcohol during the brain growth spurt. Teratology, 1991, 44, 147-163.	1.6	216
53	Alcohol-Induced Neuronal Loss in Developing Rats: Increased Brain Damage with Binge Exposure. Alcoholism: Clinical and Experimental Research, 1990, 14, 107-118.	2.4	495
54	Cell Population Depletion Associated with Fetal Alcohol Brain Damage: Mechanisms of BAC-Dependent Cell Loss. Alcoholism: Clinical and Experimental Research, 1990, 14, 813-818.	2.4	154

#	Article	IF	CITATIONS
55	Blood alcohol concentration and microencephaly: A dose-response study in the neonatal rat. Teratology, 1988, 37, 223-231.	1.6	124
56	Blood alcohol concentration and severity of microencephaly in neonatal rats depend on the pattern of alcohol administration. Alcohol, 1988, 5, 209-214.	1.7	165
57	Developmental Changes in Alcohol Pharmacokinetics in Rats. Alcoholism: Clinical and Experimental Research, 1987, 11, 281-286.	2.4	150