List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/123002/publications.pdf Version: 2024-02-01

VAN ZHENC

#	Article	IF	CITATIONS
1	Water Manganese Exposure and Children's Intellectual Function in Araihazar, Bangladesh. Environmental Health Perspectives, 2006, 114, 124-129.	6.0	652
2	Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochimica Et Cosmochimica Acta, 2000, 64, 4165-4178.	3.9	422
3	Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 2004, 19, 201-214.	3.0	348
4	Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica Et Cosmochimica Acta, 2004, 68, 3459-3473.	3.9	300
5	Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bulletin of the World Health Organization, 2012, 90, 839-846.	3.3	293
6	A rapid colorimetric method for measuring arsenic concentrations in groundwater. Analytica Chimica Acta, 2004, 526, 203-209.	5.4	271
7	Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: Evidence from sediment incubations. Geochimica Et Cosmochimica Acta, 2004, 68, 3475-3486.	3.9	231
8	Arsenic, fluoride and iodine in groundwater of China. Journal of Geochemical Exploration, 2013, 135, 1-21.	3.2	200
9	Dissolved Organic Matter Sources and Consequences for Iron and Arsenic Mobilization in Bangladesh Aquifers. Environmental Science & Technology, 2010, 44, 123-128.	10.0	196
10	Remobilization of authigenic uranium in marine sediments by bioturbation. Geochimica Et Cosmochimica Acta, 2002, 66, 1759-1772.	3.9	192
11	Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 2004, 379, 512-518.	3.7	172
12	Preservation of particulate non-lithogenic uranium in marine sediments. Geochimica Et Cosmochimica Acta, 2002, 66, 3085-3092.	3.9	171
13	Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: Implications for deeper aquifers as drinking water sources. Geochimica Et Cosmochimica Acta, 2005, 69, 5203-5218.	3.9	169
14	Associations Between Drinking Water and Urinary Arsenic Levels and Skin Lesions in Bangladesh. Journal of Occupational and Environmental Medicine, 2000, 42, 1195-1201.	1.7	155
15	Microscale AMS ¹⁴ C Measurement at NOSAMS. Radiocarbon, 1997, 40, 61-75.	1.8	153
16	Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. Environmental Health Perspectives, 2007, 115, 636-642.	6.0	149
17	Flushing History as a Hydrogeological Control on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin. Environmental Science & Technology, 2008, 42, 2283-2288.	10.0	144
18	Dissolved Organic Matter Quality in a Shallow Aquifer of Bangladesh: Implications for Arsenic Mobility. Environmental Science & Technology, 2015, 49, 10815-10824.	10.0	143

#	Article	IF	CITATIONS
19	Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh. Bulletin of the World Health Organization, 2002, 80, 732-7.	3.3	127
20	Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and waterÂdemand. Nature Geoscience, 2011, 4, 793-798.	12.9	125
21	Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Science, 2003, 165, 1343-1353.	3.6	103
22	Intensification of the Northeast Pacific oxygen minimum zone during the Bölling-Alleröd Warm Period. Paleoceanography, 2000, 15, 528-536.	3.0	102
23	Enhanced marine productivity off western North America during warm climate intervals of the past 52 k.y Geology, 2004, 32, 521.	4.4	102
24	Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh. Science of the Total Environment, 2006, 367, 769-777.	8.0	102
25	Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh. Journal of Contaminant Hydrology, 2008, 99, 97-111.	3.3	101
26	Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5331-5335.	7.1	96
27	Contributions of floodplain stratigraphy and evolution to the spatial patterns of groundwater arsenic in Araihazar, Bangladesh. Bulletin of the Geological Society of America, 2008, 120, 1567-1580.	3.3	80
28	Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in Bangladesh. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16930-16935.	7.1	79
29	Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence. Science of the Total Environment, 2015, 505, 1274-1281.	8.0	79
30	Strain decoupling across the decollement of the Barbados accretionary prism. Geology, 1996, 24, 127-130.	4.4	78
31	Evaluation of an Arsenic Test Kit for Rapid Well Screening in Bangladesh. Environmental Science & Technology, 2012, 46, 11213-11219.	10.0	78
32	A transect of groundwater and sediment properties in Araihazar, Bangladesh: Further evidence of decoupling between As and Fe mobilization. Chemical Geology, 2006, 228, 85-96.	3.3	74
33	Temporal variations in arsenic uptake by rice plants in Bangladesh: The role of iron plaque in paddy fields irrigated with groundwater. Science of the Total Environment, 2010, 408, 4185-4193.	8.0	71
34	Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction. Science of the Total Environment, 2018, 615, 1390-1395.	8.0	70
35	Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples. Analytica Chimica Acta, 2004, 511, 55-61.	5.4	66
36	Global solutions to a silent poison. Science, 2020, 368, 818-819.	12.6	66

#	Article	IF	CITATIONS
37	Arsenic Redistribution between Sediments and Water near a Highly Contaminated Source. Environmental Science & Technology, 2005, 39, 8606-8613.	10.0	64
38	Microbes Enhance Mobility of Arsenic in Pleistocene Aquifer Sand from Bangladesh. Environmental Science & Technology, 2011, 45, 2648-2654.	10.0	64
39	Enrichment of arsenic in surface water, stream sediments and soils in Tibet. Journal of Geochemical Exploration, 2013, 135, 104-116.	3.2	60
40	Relation between permeability and effective stress along a plate-boundary fault, Barbados accretionary complex. Geology, 1996, 24, 307-310.	4.4	59
41	The Case for Universal Screening of Private Well Water Quality in the U.S. and Testing Requirements to Achieve It: Evidence from Arsenic. Environmental Health Perspectives, 2017, 125, 085002.	6.0	59
42	Arsenic in private well water part 3 of 3: Socioeconomic vulnerability to exposure in Maine and New Jersey. Science of the Total Environment, 2016, 562, 1019-1030.	8.0	57
43	Field, Laboratory, and Modeling Study of Reactive Transport of Groundwater Arsenic in a Coastal Aquifer. Environmental Science & Technology, 2009, 43, 5333-5338.	10.0	52
44	Field, Experimental, and Modeling Study of Arsenic Partitioning across a Redox Transition in a Bangladesh Aquifer. Environmental Science & Technology, 2012, 46, 1388-1395.	10.0	52
45	Dissolved organic matter characteristics in soils of tropical legume and non-legume tree plantations. Soil Biology and Biochemistry, 2020, 148, 107880.	8.8	52
46	Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History. Environmental Science & Technology, 2020, 54, 9454-9463.	10.0	51
47	Dissemination of well water arsenic results to homeowners in Central Maine: Influences on mitigation behavior and continued risks for exposure. Science of the Total Environment, 2015, 505, 1282-1290.	8.0	50
48	Bioaccessibility of arsenic in various types of rice in an <i>in vitro</i> gastrointestinal fluid system. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 74-80.	1.5	49
49	Early exposure to environmental levels of sulfamethoxazole triggers immune and inflammatory response of healthy zebrafish larvae. Science of the Total Environment, 2020, 703, 134724.	8.0	49
50	Sediment Cd and Mo accumulation in the oxygen-minimum zone off western Baja California linked to global climate over the past 52 kyr. Paleoceanography, 2006, 21, .	3.0	48
51	Spatial Pattern of Groundwater Arsenic Occurrence and Association with Bedrock Geology in Greater Augusta, Maine. Environmental Science & Technology, 2009, 43, 2714-2719.	10.0	48
52	Arsenic in private well water part 1 of 3: Impact of the New Jersey Private Well Testing Act on household testing and mitigation behavior. Science of the Total Environment, 2016, 562, 999-1009.	8.0	48
53	Comment on "Arsenic Mobility and Groundwater Extraction in Bangladesh" (II). Science, 2003, 300, 584c-584.	12.6	47
54	At the crossroads: Hazard assessment and reduction of health risks from arsenic in private well waters of the northeastern United States and Atlantic Canada. Science of the Total Environment, 2015, 505, 1237-1247.	8.0	47

#	Article	IF	CITATIONS
55	Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes. Science of the Total Environment, 2022, 807, 151011.	8.0	47
56	Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession. Geochimica Et Cosmochimica Acta, 2002, 66, 849-865.	3.9	46
57	Assessment of in vivo bioaccessibility of arsenic in dietary rice by a mass balance approach. Science of the Total Environment, 2010, 408, 1430-1436.	8.0	44
58	Can Arsenic Occurrence Rates in Bedrock Aquifers Be Predicted?. Environmental Science & Technology, 2012, 46, 2080-2087.	10.0	43
59	Spectroscopic and molecular-level characteristics of dissolved organic matter in the Pearl River Estuary, South China. Science of the Total Environment, 2020, 710, 136307.	8.0	42
60	Uranium and Radon in Private Bedrock Well Water in Maine: Geospatial Analysis at Two Scales. Environmental Science & Technology, 2014, 48, 4298-4306.	10.0	41
61	Reversible adsorption and flushing of arsenic in a shallow, Holocene aquifer of Bangladesh. Applied Geochemistry, 2017, 77, 142-157.	3.0	41
62	Redox zonation and oscillation in the hyporheic zone of the Ganges-Brahmaputra-Meghna Delta: Implications for the fate of groundwater arsenic during discharge. Applied Geochemistry, 2015, 63, 647-660.	3.0	40
63	Cathodic stripping voltammetric analysis of arsenic species in environmental water samples. Microchemical Journal, 2007, 85, 265-269.	4.5	35
64	Degradation rates of CFC-11, CFC-12 and CFC-113 in anoxic shallow aquifers of Araihazar, Bangladesh. Journal of Contaminant Hydrology, 2008, 97, 27-41.	3.3	35
65	Efficient Atmospheric Transport of Microplastics over Asia and Adjacent Oceans. Environmental Science & Technology, 2022, 56, 6243-6252.	10.0	33
66	The benefit of public transportation: Physical activity to reduce obesity and ecological footprint. Preventive Medicine, 2008, 46, 4-5.	3.4	30
67	Dietary exposure to arsenic and human health risks in western Tibet. Science of the Total Environment, 2020, 731, 138840.	8.0	30
68	A rapid procedure for the determination of thorium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry: application in Chesapeake Bay. Applied Geochemistry, 2003, 18, 539-549.	3.0	28
69	Carbon, Metals, and Grain Size Correlate with Bacterial Community Structure in Sediments of a High Arsenic Aquifer. Frontiers in Microbiology, 2012, 3, 82.	3.5	27
70	Perchlorate adsorption onto epichlorohydrin crosslinked chitosan hydrogel beads. Science of the Total Environment, 2021, 761, 143236.	8.0	27
71	Challenges in Radiocarbon Dating Organic Carbon in Opal-Rich Marine Sediments. Radiocarbon, 2002, 44, 123-136.	1.8	25
72	Arsenic in private well water part 2 of 3: Who benefits the most from traditional testing promotion?. Science of the Total Environment, 2016, 562, 1010-1018.	8.0	25

#	Article	IF	CITATIONS
73	Evidence of decoupling between arsenic and phosphate in shallow groundwater of Bangladesh and potential implications. Applied Geochemistry, 2017, 77, 167-177.	3.0	25
74	Redox-dependent biotransformation of sulfonamide antibiotics exceeds sorption and mineralization: Evidence from incubation of sediments from a reclaimed water-affected river. Water Research, 2021, 205, 117616.	11.3	24
75	Metagenomic and viromic data mining reveals viral threats in biologically treated domestic wastewater. Environmental Science and Ecotechnology, 2021, 7, 100105.	13.5	23
76	Determination of beryllium in urine by graphite-furnace atomic absorption spectrometry. Analytica Chimica Acta, 1989, 217, 271-280.	5.4	22
77	Differential pulse cathodic stripping voltammetric determination of nanomolar levels of dissolved sulfide applicable to field analysis of groundwater. Analytica Chimica Acta, 2002, 459, 209-217.	5.4	22
78	Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA. Science of the Total Environment, 2015, 505, 1291-1307.	8.0	22
79	Considerations for conducting incubations to study the mechanisms of As release in reducing groundwater aquifers. Applied Geochemistry, 2008, 23, 3224-3235.	3.0	21
80	Health protective behavior following required arsenic testing under the New Jersey Private Well Testing Act. International Journal of Hygiene and Environmental Health, 2018, 221, 929-940.	4.3	21
81	Effects of dam construction on arsenic mobility and transport in two large rivers in Tibet, China. Science of the Total Environment, 2020, 741, 140406.	8.0	21
82	Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States. Science of the Total Environment, 2015, 505, 1308-1319.	8.0	20
83	Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils. Geoderma, 2022, 424, 115990.	5.1	20
84	Preliminary evidence of a link between surface soil properties and the arsenic content of shallow groundwater in Bangladesh. Journal of Geochemical Exploration, 2006, 88, 157-161.	3.2	19
85	Enhanced recovery of arsenite sorbed onto synthetic oxides by l-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samples. Water Research, 2006, 40, 2168-2180.	11.3	19
86	Recharge of lowâ€arsenic aquifers tapped by community wells in Araihazar, Bangladesh, inferred from environmental isotopes. Water Resources Research, 2016, 52, 3324-3349.	4.2	19
87	Evaluation of arsenic sorption and mobility in stream sediment and hot spring deposit in three drainages of the Tibetan Plateau. Applied Geochemistry, 2017, 77, 89-101.	3.0	19
88	Lessons Learned from Arsenic Mitigation among Private Well Households. Current Environmental Health Reports, 2017, 4, 373-382.	6.7	19
89	Simple pre-treatment by low-level oxygen plasma activates screen-printed carbon electrode: Potential for mass production. Applied Surface Science, 2021, 544, 148760.	6.1	19
90	The Water–Energy Nexus of Megacities Extends Beyond Geographic Boundaries: A Case of Beijing. Environmental Engineering Science, 2019, 36, 778-788.	1.6	18

....

#	ARTICLE	IF	CITATIONS
91	Dissolved osmium in Bengal plain groundwater: Implications for the marine Os budget. Geochimica Et Cosmochimica Acta, 2010, 74, 3432-3448.	3.9	16
92	The Effectiveness of Educational Interventions to Enhance the Adoption of Fee-Based Arsenic Testing in Bangladesh: A Cluster Randomized Controlled Trial. American Journal of Tropical Medicine and Hygiene, 2013, 89, 138-144.	1.4	16
93	Determination of Sulfamethoxazole Degradation Rate by an in Situ Experiment in a Reducing Alluvial Aquifer of the North China Plain. Environmental Science & Technology, 2019, 53, 10620-10628.	10.0	16
94	Synthesis and Photochromism Properties of Anionic Waterborne Polyurethane Containing Azobenzene Chromophores. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 942-949.	2.2	15
95	Development of fresh groundwater lens in coastal reclaimed islands. Journal of Hydrology, 2019, 573, 365-375.	5.4	15
96	Reduction in drinking water arsenic exposure and health risk through arsenic treatment among private well households in Maine and New Jersey, USA. Science of the Total Environment, 2020, 738, 139683.	8.0	13
97	Reduction of iron (hydr)oxide-bound arsenate: Evidence from high depth resolution sampling of a reducing aquifer in Yinchuan Plain, China. Journal of Hazardous Materials, 2021, 406, 124615.	12.4	13
98	Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of Al from Data-Rich Regions. Environmental Science & Technology, 2022, 56, 10530-10542.	10.0	13
99	Behavioral Determinants of Switching to Arsenic-Safe Water Wells. Health Education and Behavior, 2017, 44, 92-102.	2.5	12
100	Redox Dependent Arsenic Occurrence and Partitioning in an Industrial Coastal Aquifer: Evidence from High Spatial Resolution Characterization of Groundwater and Sediments. Water (Switzerland), 2020, 12, 2932.	2.7	12
101	Role of iron colloids in copper speciation during neutralization in a coastal acid mine drainage, South Korea: Insight from voltammetric analyses and surface complexation modeling. Journal of Geochemical Exploration, 2012, 112, 244-251.	3.2	11
102	A critical review of on-site inorganic arsenic screening methods. Journal of Environmental Sciences, 2023, 125, 453-469.	6.1	10
103	Comparative case study of legislative attempts to require private well testing in New Jersey and Maine. Environmental Science and Policy, 2018, 85, 40-46.	4.9	9
104	Sanitation coverage in Bangladesh since the millennium: consistency matters. Journal of Water Sanitation and Hygiene for Development, 2013, 3, 240-251.	1.8	8
105	Abundance and mobility of metal(loid)s in reservoir sediments of Singe Tsangpo and Yarlung Tsangpo in Tibet, China: Implications for ecological risk. Environmental Geochemistry and Health, 2021, 43, 3213-3228.	3.4	8
106	Hillslopes in Headwaters of Qinghaiâ€Tibetan Plateau as Hotspots for Subsurface Dissolved Organic Carbon Processing During Permafrost Thaw. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006222.	3.0	8
107	Fabrication, Characterization and Performance Evaluation of Screen-printed Carbon Electrodes: Determination of Acetaminophen in Tylenol. Chinese Journal of Analytical Chemistry, 2021, 49, e21187-e21196.	1.7	8
108	Microorganisms as bioâ€filters to mitigate greenhouse gas emissions from highâ€altitude permafrost revealed by nanoporeâ€based metagenomics. , 0, , .		8

#	Article	IF	CITATIONS
109	Persistent arsenate–iron(<scp>iii</scp>) oxyhydroxide–organic matter nanoaggregates observed in coal. Environmental Science: Nano, 2021, 8, 2964-2975.	4.3	7
110	In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. Applied Geochemistry, 2022, 136, 105155.	3.0	7
111	Increasing acceptance of chlorination for household water treatment: observations from Bangladesh. Waterlines, 2013, 32, 125-134.	0.4	6
112	Hydrological buffering during groundwater acidification in rapidly industrializing alluvial plains. Journal of Contaminant Hydrology, 2018, 218, 19-33.	3.3	6
113	On the influence of a raffle upon responses to an urban transportation survey in New York City. International Journal of Public Health, 2009, 54, 31-34.	2.6	5
114	Specific Types and Adaptability Evaluation of Managed Aquifer Recharge for Irrigation in the North China Plain. Water (Switzerland), 2020, 12, 562.	2.7	5
115	Metallothionein separation and analysis by reversed phase high performance liquid chromatography coupled with graphite furnace atomic absorption spectrometry. Chemical Speciation and Bioavailability, 1991, 3, 30-36.	2.0	4
116	Photoisomerization of waterborne polyurethane with side-chained phenylazonaphthalene group. Polymer Bulletin, 2017, 74, 3109-3121.	3.3	3
117	Improve private well testing outreach efficiency by targeting households based on proximity to a high arsenic well. Science of the Total Environment, 2020, 738, 139689.	8.0	3
118	Sediment Core Sectioning and Extraction of Pore Waters under Anoxic Conditions. Journal of Visualized Experiments, 2016, , .	0.3	1
119	Using geophysics to understand arsenic occurrence in Bangladesh groundwater. , 2002, , .		1