Gaby Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1229053/publications.pdf

Version: 2024-02-01

97 papers 6,307 citations

36 h-index 78 g-index

108 all docs

 $\frac{108}{\text{docs citations}}$

108 times ranked 8725 citing authors

#	Article	IF	Citations
1	Multifaceted roles of IL-38 in inflammation and cancer. Cytokine, 2022, 151, 155808.	3.2	12
2	<scp>IL</scp> â€38 orchestrates proliferation and differentiation in human keratinocytes. Experimental Dermatology, 2022, 31, 1699-1711.	2.9	12
3	Detection of circulating highly expanded T-cell clones in at-risk individuals for rheumatoid arthritis before the clinical onset of the disease. Rheumatology, 2021, 60, 3451-3460.	1.9	6
4	IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Frontiers in Immunology, 2021, 12, 652846.	4.8	41
5	IL-38 Ablation Reduces Local Inflammation and Disease Severity in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2021, 206, 1058-1066.	0.8	13
6	Production of IL-18 Binding Protein by Radiosensitive and Radioresistant Cells in CpG-Induced Macrophage Activation Syndrome. Journal of Immunology, 2020, 205, 1167-1175.	0.8	13
7	Intracellular IL-1 Receptor Antagonist Isoform 1 Released from Keratinocytes upon Cell Death Acts as an Inhibitor for the Alarmin IL-11±. Journal of Immunology, 2020, 204, 967-979.	0.8	8
8	Interleukin-33 Signaling Controls the Development of Iron-Recycling Macrophages. Immunity, 2020, 52, 782-793.e5.	14.3	37
9	P157â€Radioresistant and radiosensitive cells contribute to IL-18BP production in a model of macrophage activation syndrome. , 2019, , .		O
10	P069â€Constitutive overexpression of interleukin 38 has a negative impact on human NHK keratinocyte fitness. , 2019, , .		0
11	P097 Intracellular interleukin-1 receptor antagonist released upon cell death acts as an alarmin inhibitor in aldara cream-induced psoriasis-like skin inflammation. , 2019, , .		O
12	SAT0005â€DETECTION OF HIGHLY EXPANDED T CELL CLONES IN THE PERIPHERAL BLOOD OF AT RISK INDIVIDUALS FOR RHEUMATOID ARTHRITIS BEFORE THE CLINICAL ONSET OF THE DISEASE., 2019,,.		0
13	Interleukin-38 interacts with destrin/actin-depolymerizing factor in human keratinocytes. PLoS ONE, 2019, 14, e0225782.	2.5	16
14	Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood, 2018, 131, 1430-1441.	1.4	102
15	O025â€Unopposed interleukin 18 signalling leads to severe toll like receptor 9-induced macrophage activation syndrome in mice. , 2018, , .		O
16	The severity of imiquimod-induced mouse skin inflammation is independent of endogenous IL-38 expression. PLoS ONE, 2018, 13, e0194667.	2.5	31
17	Deficiency in IL-1 Receptor Type 2 Aggravates K/BxN Serum Transfer-Induced Arthritis in Mice but Has No Impact on Systemic Inflammatory Responses. Journal of Immunology, 2017, 198, 2916-2926.	0.8	14
18	IL-38 overexpression induces anti-inflammatory effects in mice arthritis models and in human macrophages in vitro. Annals of the Rheumatic Diseases, 2017, 76, 1304-1312.	0.9	101

#	Article	lF	Citations
19	02.11â€Il-38 is not involved in the modulation of imq-induced skin inflammation. , 2017, , .		O
20	A7.13â€Distinct expression of IL-36α, β, γ and their antagonists IL-36RA and IL-38 in psoriasis, rheumatoid arthritis (RA) and crohn's disease (CD). Annals of the Rheumatic Diseases, 2016, 75, A60.3-A61.	0.9	0
21	IL-36–Induced Toxicity in Neonatal Mice Involves TNF-α Production by Liver Myeloid Cells. Journal of Immunology, 2016, 197, 2239-2249.	0.8	7
22	A10.02â€Deficiency in IL-1 receptor type 2 aggravates K/BXN serum transfer-induced arthritis in mice, but has no effect in endotoxemia. Annals of the Rheumatic Diseases, 2016, 75, A73.1-A73.	0.9	0
23	Distinct expression of interleukin (IL)-36 $<$ b $>$ \hat{l} \pm , $\hat{l}^2 <$ /b $>$ and $<$ b $>$ $\hat{l}^3 <$ /b $>$, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn's disease. Clinical and Experimental Immunology, 2016, 184, 159-173.	2.6	214
24	Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines. Cytokine, 2016, 84, 88-98.	3. 2	70
25	Interleukin-33 and RANK-L Interplay in the Alveolar Bone Loss Associated to Periodontitis. PLoS ONE, 2016, 11, e0168080.	2.5	42
26	A5.12â€Atherosclerosis severity is independent of endogenous IL-33 signalling. Annals of the Rheumatic Diseases, 2015, 74, A51.3-A52.	0.9	0
27	Limited Contribution of IL-36 versus IL-1 and TNF Pathways in Host Response to Mycobacterial Infection. PLoS ONE, 2015, 10, e0126058.	2.5	33
28	Atherosclerosis severity is not affected by a deficiency in ILâ€33/ST2 signaling. Immunity, Inflammation and Disease, 2015, 3, 239-246.	2.7	18
29	The interleukin (IL)-1 cytokine family – Balance between agonists and antagonists in inflammatory diseases. Cytokine, 2015, 76, 25-37.	3.2	385
30	Severe Neutrophil-Dominated Inflammation and Enhanced Myelopoiesis in IL-33–Overexpressing CMV/IL33 Mice. Journal of Immunology, 2015, 194, 750-760.	0.8	26
31	Immune-mediated experimental arthritis in IL-33 deficient mice. Cytokine, 2014, 69, 68-74.	3.2	20
32	The severity of experimental arthritis is independent of IL-36 receptor signaling. Arthritis Research and Therapy, 2013, 15, R38.	3.5	52
33	Disease severity in K/BxN serum transfer-induced arthritis is not affected by IL-33 deficiency. Arthritis Research and Therapy, 2013, 15, R13.	3.5	33
34	Reply to Xie et al. about the article "Distinct serum and synovial fluid interleukin (IL)-33 levels in rheumatoid arthritis, psoriatic arthritis and osteoarthritis― Joint Bone Spine, 2013, 80, 117-118.	1.6	1
35	Endogenous IL-1α is a chromatin-associated protein in mouse macrophages. Cytokine, 2013, 63, 135-144.	3.2	29
36	Mouse neutrophils express the decoy type 2 interleukin-1 receptor (IL-1R2) constitutively and in acute inflammatory conditions. Journal of Leukocyte Biology, 2013, 94, 791-802.	3.3	47

#	Article	IF	Citations
37	Articular inflammation is controlled by myeloid cell-derived interleukin 1 receptor antagonist during the acute phase of arthritis in mice. Annals of the Rheumatic Diseases, 2012, 71, 281-287.	0.9	14
38	IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells. Blood, 2012, 120, 3478-3487.	1.4	195
39	O034 Expression of the decoy type 2 interleukin-1 receptor in mouse and its putative role in inflammation. Cytokine, 2012, 59, 513.	3.2	0
40	Mice deficient in hepatocyteâ€specific <scp> L< scp>â€1 Ra show delayed resolution of concanavalin <scp>A< scp>â€induced hepatitis. European Journal of Immunology, 2012, 42, 1294-1303.</scp></scp>	2.9	16
41	Distinct serum and synovial fluid interleukin (IL)-33 levels in rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Joint Bone Spine, 2012, 79, 32-37.	1.6	81
42	Interleukin-33 biology with potential insights into human diseases. Nature Reviews Rheumatology, 2011, 7, 321-329.	8.0	184
43	IL-33 is expressed in human osteoblasts, but has no direct effect on bone remodeling. Cytokine, 2011, 53, 347-354.	3.2	52
44	IL-36R ligands are potent regulators of dendritic and T cells. Blood, 2011, 118, 5813-5823.	1.4	271
45	Autoimmunity and inflammation are independent of class II transactivator type PIV–dependent class II major histocompatibility complex expression in peripheral tissues during collagenâ€induced arthritis. Arthritis and Rheumatism, 2011, 63, 3354-3363.	6.7	5
46	Inflammation and autoimmune responses are independent of peripheral MHC class II expression driven by CIITA pIV in collagen induced arthritis. Annals of the Rheumatic Diseases, 2011, 70, A25-A25.	0.9	0
47	Interleukin 33 expression in human arthritis. Annals of the Rheumatic Diseases, 2011, 70, A14-A15.	0.9	0
48	The mouse <i>interleukin (II)33</i> gene is expressed in a cell type- and stimulus-dependent manner from two alternative promoters. Journal of Leukocyte Biology, 2011, 91, 119-125.	3.3	52
49	Inhibition of osteoclast differentiation by the interleukin (IL)-1 family cytokine IL-33. IBMS BoneKEy, 2011, 8, 415-419.	0.0	0
50	IL-1 pathways in inflammation and human diseases. Nature Reviews Rheumatology, 2010, 6, 232-241.	8.0	689
51	Enhanced Th1 and Th17 responses and arthritis severity in mice with a deficiency of myeloid cell–specific interleukinâ€1 receptor antagonist. Arthritis and Rheumatism, 2010, 62, 452-462.	6.7	37
52	Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology, 2010, 129, 178-185.	4.4	85
53	Distinct Roles of Hepatocyte- and Myeloid Cell-Derived IL-1 Receptor Antagonist during Endotoxemia and Sterile Inflammation in Mice. Journal of Immunology, 2010, 185, 2516-2524.	0.8	21
54	Interleukin-33 Is Biologically Active Independently of Caspase-1 Cleavage. Journal of Biological Chemistry, 2009, 284, 19420-19426.	3.4	226

#	Article	IF	CITATIONS
55	Adaptive Immune Response in JAM-C-Deficient Mice: Normal Initiation but Reduced IgG Memory. Journal of Immunology, 2009, 182, 4728-4736.	0.8	12
56	Anakinra is a possible alternative in the treatment and prevention of acute attacks of pseudogout in end-stage renal failure. Joint Bone Spine, 2009, 76, 424-426.	1.6	76
57	Inhibition of interleukinâ€33 signaling attenuates the severity of experimental arthritis. Arthritis and Rheumatism, 2009, 60, 738-749.	6.7	294
58	L'anakinra est une alternative possible dans le traitement et la prévention des crises de pseudogoutte au stade terminal d'une insuffisance rénale. Revue Du Rhumatisme (Edition Francaise), 2009, 76, 715-717.	0.0	0
59	Magnetically retainable microparticles for drug delivery to the joint: efficacy studies in an antigen-induced arthritis model in mice. Arthritis Research and Therapy, 2009, 11, R72.	3.5	45
60	Mutations in the IL1RN locus lead to autoinflammation. Nature Reviews Rheumatology, 2009, 5, 480-482.	8.0	10
61	ILâ€1, ILâ€18, and ILâ€33 families of cytokines. Immunological Reviews, 2008, 223, 20-38.	6.0	770
62	The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine, 2008, 42, 358-364.	3.2	160
63	67 Biological role of hepatocyte-derived interleukin-1 receptor antagonist in a model of systemic inflammation. Cytokine, 2008, 43, 252.	3.2	O
64	68 Biological role of myeloid cell-derived interleukin-1 receptor antagonist in collagen-induced arthritis. Cytokine, 2008, 43, 252.	3.2	0
65	Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine, 2007, 40, 216-225.	3.2	285
66	Expression and function of junctional adhesion molecule-C in human and experimental arthritis. Arthritis Research and Therapy, 2007, 9, R65.	3.5	36
67	IL-33: a novel cytokine with proinflammatory properties. Arthritis Research and Therapy, 2007, 9, P9.	3.5	O
68	Type I IL-1 Receptor Mediates IL-1 and Intracellular IL-1 Receptor Antagonist Effects in Skin Inflammation. Journal of Investigative Dermatology, 2007, 127, 1938-1946.	0.7	22
69	Discrimination of C57BL/6J Rj and 129S2/SvPasCrl inbred mouse strains by use of simple sequence length polymorphisms. Journal of the American Association for Laboratory Animal Science, 2007, 46, 21-4.	1.2	9
70	The role of leptin in innate and adaptive immune responses. Arthritis Research and Therapy, 2006, 8, 217.	3.5	98
71	The new IL-1 family member IL-1F8 stimulates production of inflammatory mediators by synovial fibroblasts and articular chondrocytes. Arthritis Research and Therapy, 2006, 8, R80.	3.5	105
72	The active metabolite of leflunomide, A77 1726, increases proliferation of human synovial fibroblasts in presence of IL- $1\hat{l}^2$ and TNF- $\hat{l}\pm$. Inflammation Research, 2006, 55, 469-475.	4.0	7

#	Article	IF	CITATIONS
73	Is IL-1 a good therapeutic target in the treatment of arthritis?. Best Practice and Research in Clinical Rheumatology, 2006, 20, 879-896.	3.3	144
74	Leukocyte migration to rheumatoid joints: Enzymes take over. Arthritis and Rheumatism, 2006, 54, 2707-2710.	6.7	15
75	Indirect Effects of Leptin Receptor Deficiency on Lymphocyte Populations and Immune Response in <i>db/db</i> Mice. Journal of Immunology, 2006, 177, 2899-2907.	0.8	75
76	Pre-interleukin-1α expression reduces cell growth and increases interleukin-6 production in SaOS-2 osteosarcoma cells: Differential inhibitory effect of interleukin-1 receptor antagonist (iclL-1Ra1). Cytokine, 2005, 31, 153-160.	3.2	28
77	Assessment of the efficacy of different statins in murine collagen-induced arthritis. Arthritis and Rheumatism, 2004, 50, 4051-4059.	6.7	69
78	Delayed resolution of acute inflammation during zymosan-induced arthritis in leptin-deficient mice. Arthritis Research, 2004, 6, R256.	2.0	54
79	The active metabolite of leflunomide, A77 1726, increases the production of IL-1 receptor antagonist in human synovial fibroblasts and articular chondrocytes. Arthritis Research, 2004, 6, R181.	2.0	17
80	Mice transgenic for intracellular interleukin-1 receptor antagonist type 1 are protected from collagen-induced arthritis. European Journal of Immunology, 2003, 33, 434-440.	2.9	29
81	Production of interleukin-1 receptor antagonist by human articular chondrocytes. Arthritis Research, 2002, 4, 226-31.	2.0	44
82	Primary human articular chondrocytes, dedifferentiated chondrocytes, and synoviocytes exhibit differential responsiveness to interleukin-4: Correlation with the expression pattern of the common receptor gamma chain. Journal of Cellular Physiology, 2002, 192, 93-101.	4.1	18
83	Species-specific mechanisms control the activity of the Pit1/PIT1 phosphate transporter gene promoter in mouse and human. Gene, 2001, 279, 49-62.	2.2	6
84	Stimulation of Sodium-Dependent Phosphate Transport and Signaling Mechanisms Induced by Basic Fibroblast Growth Factor in MC3T3-E1 Osteoblast-like Cells. Journal of Bone and Mineral Research, 2000, 15, 95-102.	2.8	59
85	Evidence for the Involvement of Two Pathways in Activation of Extracellular Signal-Regulated Kinase (Erk) and Cell Proliferation by Gi and Gq Protein-Coupled Receptors in Osteoblast-Like Cells. Journal of Bone and Mineral Research, 2000, 15, 1697-1706.	2.8	49
86	Positive and Negative Control of the Expression of Parathyroid Hormone (PTH)/PTH-Related Protein Receptor Via Proximal Promoter P3 in Human Osteoblast-Like Cells ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3376-3382.	3.6	10
87	Transforming Growth Factor-Î ² Stimulates Inorganic Phosphate Transport and Expression of the Type III Phosphate Transporter Glvr-1 in Chondrogenic ATDC5 Cells*. Endocrinology, 2000, 141, 2236-2243.	2.8	60
88	Structure of the murine Pit1 phosphate transporter/retrovirus receptor gene and functional characterization of its promoter region. Gene, 2000, 244, 35-45.	2.2	6
89	Transforming Growth Factor-Â Stimulates Inorganic Phosphate Transport and Expression of the Type III Phosphate Transporter Glvr-1 in Chondrogenic ATDC5 Cells. Endocrinology, 2000, 141, 2236-2243.	2.8	21
90	Regulation of Alkaline Phosphatase Activity by p38 MAP Kinase in Response to Activation of Gi Protein-Coupled Receptors by Epinephrine in Osteoblast-Like Cells ¹ . Endocrinology, 1999, 140, 3177-3182.	2.8	97

#	Article	IF	CITATION
91	Characterization of the human Glvr-1 phosphate transporter/retrovirus receptor gene and promoter region. Gene, 1999, 226, 25-33.	2.2	12
92	Regulation of Alkaline Phosphatase Activity by p38 MAP Kinase in Response to Activation of Gi Protein-Coupled Receptors by Epinephrine in Osteoblast-Like Cells. Endocrinology, 1999, 140, 3177-3182.	2.8	32
93	Sequence and activity of parathyroid hormone/parathyroid hormone-related protein receptor promoter region in human osteoblast-like cells. Gene, 1998, 218, 49-56.	2.2	19
94	Expression of a Newly Identified Phosphate Transporter/Retrovirus Receptor in Human SaOS-2 Osteoblast-Like Cells and Its Regulation by Insulin-Like Growth Factor I ¹ . Endocrinology, 1997, 138, 5202-5209.	2.8	87
95	Mechanism of the Mitogenic Effect of Fluoride on Osteoblast-like Cells: Evidences for a G Protein-Dependent Tyrosine Phosphorylation Process. Journal of Bone and Mineral Research, 1997, 12, 1975-1983.	2.8	52
96	Expression of a Newly Identified Phosphate Transporter/Retrovirus Receptor in Human SaOS-2 Osteoblast-Like Cells and Its Regulation by Insulin-Like Growth Factor I. Endocrinology, 1997, 138, 5202-5209.	2.8	34
97	Trypanosoma cruzi heat-shock protein 90 can functionally complement yeast. Molecular and Biochemical Parasitology, 1995, 70, 199-202.	1.1	24