List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228465/publications.pdf Version: 2024-02-01

		53794	51608
92	13,311	45	86
papers	citations	h-index	g-index
111	111	111	18876
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	JAK inhibition in a patient with a STAT1 gain-of-function variant reveals STAT1 dysregulation as a common feature of aplastic anemia. Med, 2022, 3, 42-57.e5.	4.4	11
2	CRISPR Interference Reveals That All- <i>Trans</i> -Retinoic Acid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A. MBio, 2022, 13, e0368321.	4.1	19
3	Multiplexed Strain Phenotyping Defines Consequences of Genetic Diversity in Mycobacterium tuberculosis for Infection and Vaccination Outcomes. MSystems, 2022, 7, e0011022.	3.8	3
4	Spontaneous Control of SIV Replication Does Not Prevent T Cell Dysregulation and Bacterial Dissemination in Animals Co-Infected with M. tuberculosis. Microbiology Spectrum, 2022, 10, e0172421.	3.0	8
5	Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity, 2022, 55, 827-846.e10.	14.3	92
6	A tRNA-Acetylating Toxin and Detoxifying Enzyme in Mycobacterium tuberculosis. Microbiology Spectrum, 2022, 10, .	3.0	4
7	Loss of RNase J leads to multi-drug tolerance and accumulation of highly structured mRNA fragments in Mycobacterium tuberculosis. PLoS Pathogens, 2022, 18, e1010705.	4.7	14
8	ClpX Is Essential and Activated by Single-Strand DNA Binding Protein in Mycobacteria. Journal of Bacteriology, 2021, 203, .	2.2	6
9	Antibody Subclass and Glycosylation Shift Following Effective TB Treatment. Frontiers in Immunology, 2021, 12, 679973.	4.8	22
10	A Mycobacterium tuberculosis Specific IgG3 Signature of Recurrent Tuberculosis. Frontiers in Immunology, 2021, 12, 729186.	4.8	8
11	Global Analysis of the Specificities and Targets of Endoribonucleases from Escherichia coli Toxin-Antitoxin Systems. MBio, 2021, 12, e0201221.	4.1	15
12	Fluorescence Imaging-Based Discovery of Membrane Domain-Associated Proteins in <i>Mycobacterium smegmatis</i> . Journal of Bacteriology, 2021, 203, e0041921.	2.2	3
13	Robust IgM responses following intravenous vaccination with Bacille Calmette–Guérin associate with prevention of Mycobacterium tuberculosis infection in macaques. Nature Immunology, 2021, 22, 1515-1523.	14.5	55
14	Spatiotemporal localization of proteins in mycobacteria. Cell Reports, 2021, 37, 110154.	6.4	16
15	Illuminating Host-Mycobacterial Interactions with Genome-wide CRISPR Knockout and CRISPRi Screens. Cell Systems, 2020, 11, 239-251.e7.	6.2	23
16	A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathogens, 2020, 16, e1009000.	4.7	22
17	SIV and Mycobacterium tuberculosis synergy within the granuloma accelerates the reactivation pattern of latent tuberculosis. PLoS Pathogens, 2020, 16, e1008413.	4.7	31
18	<i>Mycobacterium tuberculosis</i> clinical isolates carry mutational signatures of host immune environments. Science Advances, 2020, 6, eaba4901.	10.3	33

#	Article	IF	CITATIONS
19	Antibody Fc Glycosylation Discriminates Between Latent and Active Tuberculosis. Journal of Infectious Diseases, 2020, 222, 2093-2102.	4.0	47
20	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	28.9	1,956
21	HIV Is Associated with Modified Humoral Immune Responses in the Setting of HIV/TB Coinfection. MSphere, 2020, 5, .	2.9	14
22	Mutations in dnaA and a cryptic interaction site increase drug resistance in Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1009063.	4.7	23
23	Title is missing!. , 2020, 16, e1009063.		0
24	Title is missing!. , 2020, 16, e1009063.		0
25	Title is missing!. , 2020, 16, e1009063.		0
26	Title is missing!. , 2020, 16, e1009063.		0
27	Structural and functional insight into the Mycobacterium tuberculosis protein PrpR reveals a novel type of transcription factor. Nucleic Acids Research, 2019, 47, 9934-9949.	14.5	18
28	Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nature Communications, 2019, 10, 2329.	12.8	62
29	IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nature Medicine, 2019, 25, 977-987.	30.7	186
30	Bacterial Genome-Wide Association Identifies Novel Factors That Contribute to Ethionamide and Prothionamide Susceptibility in Mycobacterium tuberculosis. MBio, 2019, 10, .	4.1	39
31	Dual RNA-Seq of Human Leprosy Lesions Identifies Bacterial Determinants Linked to Host Immune Response. Cell Reports, 2019, 26, 3574-3585.e3.	6.4	38
32	Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 2019, 17, 441-448.	28.6	748
33	Rifampicin and rifabutin resistance in 1003 Mycobacterium tuberculosis clinical isolates. Journal of Antimicrobial Chemotherapy, 2019, 74, 1477-1483.	3.0	39
34	<i>Mycobacterium tuberculosis</i> Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. Journal of Immunology, 2018, 200, 3244-3258.	0.8	18
35	Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. Science Advances, 2018, 4, eaao1478.	10.3	55
36	Misunderstanding the goals of animal research. BMJ: British Medical Journal, 2018, 360, k759.	2.3	0

#	Article	IF	CITATIONS
37	Beyond binding: antibody effector functions in infectious diseases. Nature Reviews Immunology, 2018, 18, 46-61.	22.7	516
38	Concurrent infection with Mycobacterium tuberculosis confers robust protection against secondary infection in macaques. PLoS Pathogens, 2018, 14, e1007305.	4.7	69
39	Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nature Microbiology, 2018, 3, 1032-1042.	13.3	132
40	Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathogens, 2018, 14, e1007060.	4.7	78
41	Small RNA profiling in <i>Mycobacterium tuberculosis</i> identifies MrsI as necessary for an anticipatory iron sparing response. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6464-6469.	7.1	83
42	TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathogens, 2018, 14, e1006939.	4.7	78
43	Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nature Reviews Immunology, 2018, 18, 575-589.	22.7	241
44	Comprehensive Essentiality Analysis of the <i>Mycobacterium tuberculosis</i> Genome via Saturating Transposon Mutagenesis. MBio, 2017, 8, .	4.1	496
45	Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2, 16274.	13.3	368
46	Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nature Methods, 2017, 14, 395-398.	19.0	706
47	Digitally Barcoding <i>Mycobacterium tuberculosis</i> Reveals <i>In Vivo</i> Infection Dynamics in the Macaque Model of Tuberculosis. MBio, 2017, 8, .	4.1	146
48	Heterogeneity in tuberculosis. Nature Reviews Immunology, 2017, 17, 691-702.	22.7	379
49	The Capacity of <i>Mycobacterium tuberculosis</i> To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. MBio, 2017, 8, .	4.1	116
50	DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. Advances in Experimental Medicine and Biology, 2017, 1019, 247-262.	1.6	11
51	The Importance of First Impressions: Early Events in Mycobacterium tuberculosis Infection Influence Outcome. MBio, 2016, 7, e00342-16.	4.1	129
52	RNA Extraction from a Mycobacterium under Ultrahigh Electric Field Intensity in a Microfluidic Device. Analytical Chemistry, 2016, 88, 5053-5057.	6.5	12
53	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14.	28.9	461
54	Biodiversity and hypervirulence of Listeria monocytogenes. Nature Genetics, 2016, 48, 229-230.	21.4	8

#	Article	IF	CITATIONS
55	A bug's life in the granuloma. Seminars in Immunopathology, 2016, 38, 213-220.	6.1	44
56	PET CT Identifies Reactivation Risk in Cynomolgus Macaques with Latent M. tuberculosis. PLoS Pathogens, 2016, 12, e1005739.	4.7	102
57	A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. ELife, 2016, 5, .	6.0	82
58	Leaderless Transcripts and Small Proteins Are Common Features of the Mycobacterial Translational Landscape. PLoS Genetics, 2015, 11, e1005641.	3.5	207
59	DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nature Genetics, 2015, 47, 677-681.	21.4	63
60	Variability in Tuberculosis Granuloma T Cell Responses Exists, but a Balance of Pro- and Anti-inflammatory Cytokines Is Associated with Sterilization. PLoS Pathogens, 2015, 11, e1004603.	4.7	275
61	Linked Domain Architectures Allow for Specialization of Function in the FtsK/SpollIE ATPases of ESX Secretion Systems. Journal of Molecular Biology, 2015, 427, 1119-1132.	4.2	29
62	Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria. PLoS Pathogens, 2015, 11, e1005010.	4.7	100
63	Molecular profiling of <i>Mycobacterium tuberculosis</i> identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2978-2983.	7.1	83
64	Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nature Medicine, 2014, 20, 75-79.	30.7	442
65	Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 91-101.	5.2	160
66	The Spectrum of Drug Susceptibility in Mycobacteria. Microbiology Spectrum, 2014, 2, .	3.0	24
67	The ESX System in Bacillus subtilis Mediates Protein Secretion. PLoS ONE, 2014, 9, e96267.	2.5	51
68	Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nature Genetics, 2013, 45, 784-790.	21.4	405
69	DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis. PLoS Pathogens, 2013, 9, e1003419.	4.7	132
70	Recognition of the WXG Substrate YukE by the Type VII Secretion System in Bacillus subtilis. FASEB Journal, 2013, 27, 554.6.	0.5	0
71	The Surprising Diversity of Mycobacterium tuberculosis: Change You Can Believe In. Journal of Infectious Diseases, 2012, 206, 1642-1644.	4.0	7
72	Asymmetry and Aging of Mycobacterial Cells Lead to Variable Growth and Antibiotic Susceptibility. Science, 2012, 335, 100-104.	12.6	411

SARAH M FORTUNE

#	Article	IF	CITATIONS
73	Efferocytosis Is an Innate Antibacterial Mechanism. Cell Host and Microbe, 2012, 12, 289-300.	11.0	226
74	Polar assembly and scaffolding proteins of the virulenceâ€associated ESXâ€1 secretory apparatus in mycobacteria. Molecular Microbiology, 2012, 83, 654-664.	2.5	26
75	Mycobacterium tuberculosis – Heterogeneity revealed through whole genome sequencing. Tuberculosis, 2012, 92, 194-201.	1.9	75
76	Asymmetry and aging of mycobacterial cells: a novel mechanism of diversification. FASEB Journal, 2012, 26, 466.1.	0.5	0
77	Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nature Genetics, 2011, 43, 482-486.	21.4	403
78	Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for <i>Mycobacterium tuberculosis</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5730-5735.	7.1	149
79	Mycobacterium tuberculosisDirects Immunofocusing of CD8+T Cell Responses Despite Vaccination. Journal of Immunology, 2011, 186, 1627-1637.	0.8	29
80	Variation among Genome Sequences of H37Rv Strains of <i>Mycobacterium tuberculosis</i> from Multiple Laboratories. Journal of Bacteriology, 2010, 192, 3645-3653.	2.2	216
81	EspA Acts as a Critical Mediator of ESX1-Dependent Virulence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity. PLoS Pathogens, 2010, 6, e1000957.	4.7	84
82	Host transcription in active and latent tuberculosis. Genome Biology, 2010, 11, 135.	9.6	3
83	Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18792-18797.	7.1	287
84	NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis. PLoS Pathogens, 2009, 5, e1000500.	4.7	239
85	Systematic Genetic Nomenclature for Type VII Secretion Systems. PLoS Pathogens, 2009, 5, e1000507.	4.7	233
86	Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nature Immunology, 2009, 10, 899-906.	14.5	303
87	Bacterial Protein Secretion Is Required for Priming of CD8 ⁺ T Cells Specific for the <i>Mycobacterium tuberculosis</i> Antigen CFP10. Infection and Immunity, 2008, 76, 4199-4205.	2.2	40
88	The Complex Relationship between Mycobacteria and Macrophages: It's Not All Bliss. Cell Host and Microbe, 2007, 2, 5-6.	11.0	10
89	Dividing oceans into pools: strategies for the global analysis of bacterial genes. Microbes and Infection, 2006, 8, 1631-1636.	1.9	3
90	Mutually dependent secretion of proteins required for mycobacterial virulence. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10676-10681.	7.1	372

0

#	Article	IF	CITATIONS
91	<i>Mycobacterium tuberculosis</i> Inhibits Macrophage Responses to IFN-γ through Myeloid Differentiation Factor 88-Dependent and -Independent Mechanisms. Journal of Immunology, 2004, 172, 6272-6280.	0.8	182

92 The Spectrum of Drug Susceptibility in Mycobacteria. , 0, , 709-725.