Sandrine Ricote

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228028/publications.pdf

Version: 2024-02-01

172457 128289 3,778 79 29 60 citations h-index g-index papers 80 80 80 2514 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 2015, 349, 1321-1326.	12.6	982
2	Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature, 2018, 557, 217-222.	27.8	500
3	Water vapour solubility and conductivity study of the proton conductor BaCe(0.9â^'x)ZrxY0.1O(3â^'Î). Solid State Ionics, 2009, 180, 990-997.	2.7	160
4	Low temperature water–gas shift: Characterization and testing of binary mixed oxides of ceria and zirconia promoted with Pt. Applied Catalysis A: General, 2006, 303, 35-47.	4.3	159
5	Conductivity study of dense BaCexZr(0.9â^'x)Y0.1O(3â^'Î) prepared by solid state reactive sintering at 1500°C. International Journal of Hydrogen Energy, 2012, 37, 7954-7961.	7.1	113
6	Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes. Crystals, 2018, 8, 365.	2.2	102
7	Enhanced sintering and conductivity study of cobalt or nickel doped solid solution of barium cerate and zirconate. Solid State Ionics, 2010, 181, 694-700.	2.7	96
8	Low temperature water-gas shift: Examining the efficiency of Au as a promoter for ceria-based catalysts prepared by CVD of a Au precursor. Applied Catalysis A: General, 2005, 292, 229-243.	4.3	87
9	Structural and conductivity study of the proton conductor BaCe(0.9â^x)ZrxY0.1O(3â^î) at intermediate temperatures. Journal of Power Sources, 2009, 193, 189-193.	7.8	82
10	Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology. Journal of Power Sources, 2017, 369, 65-77.	7.8	77
11	Effects of the fabrication process on the grain-boundary resistance in BaZr _{0.9} Y _{0.1} O _{3â°Î′} . Journal of Materials Chemistry A, 2014, 2, 16107-16115.	10.3	73
12	Defect Incorporation and Transport within Dense BaZr _{0.8} Y _{0.2} O _{3 â^'Î} (BZY20) Proton-Conducting Membranes. Journal of the Electrochemical Society, 2018, 165, F581-F588.	2.9	69
13	LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3â ⁻ Î ⁻ electrolyte. Journal of Power Sources, 2012, 218, 313-319.	7.8	65
14	Defect Chemistry and Transport within Dense BaCe _{0.7} Zr _{0.1} Y _{0.1} Yb _{0.1} O _{3 â^î Î} (BCZYYb) Proton-Conducting Membranes. Journal of the Electrochemical Society, 2018, 165, F845-F853.	2.9	64
15	Low temperature water-gas shift: Type and loading of metal impacts decomposition and hydrogen exchange rates of pseudo-stabilized formate over metal/ceria catalysts. Applied Catalysis A: General, 2006, 302, 14-21.	4.3	62
16	Low temperature water gas shift: Type and loading of metal impacts forward decomposition of pseudo-stabilized formate over metal/ceria catalysts. Catalysis Today, 2005, 106, 259-264.	4.4	60
17	Characterization of ionic transport through BaCe 0.2 Zr 0.7 Y 0.1 O 3â^Î membranes in galvanic and electrolytic operation. International Journal of Hydrogen Energy, 2015, 40, 9278-9286.	7.1	52
18	Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1â^î¾)Niî¾O(3â^î). Solid State Ionics, 2011, 185, 11-17.	2.7	51

#	Article	IF	CITATIONS
19	Advanced Materials for Thinâ€Film Solid Oxide Fuel Cells: Recent Progress and Challenges in Boosting the Device Performance at Low Temperatures. Advanced Functional Materials, 2022, 32, .	14.9	51
20	Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics. Faraday Discussions, 2015, 182, 49-74.	3.2	49
21	Hydrogen permeation through dense BaCe 0.8 Y 0.2 O 3â^Π– Ce 0.8 Y 0.2 O 2â^Î composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 2016, 41, 2598-2606.	7.1	49
22	Microstructure and performance of La0.58Sr0.4Co0.2Fe0.8O3â^î^î cathodes deposited on BaCe0.2Zr0.7Y0.1O3â^î^î by infiltration and spray pyrolysis. Journal of Power Sources, 2012, 209, 172-179.	7.8	44
23	Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes. Materials, 2018, 11, 196.	2.9	43
24	Conductivity study of dense BaZr0.9Y0.1O($3\hat{a}^{\gamma}\hat{l}$) obtained by spark plasma sintering. Solid State Ionics, 2012, 213, 36-41.	2.7	42
25	Exploring electronic conduction through BaCe Zr0.9â^'Y0.1O3â^'d proton-conducting ceramics. Solid State Ionics, 2016, 286, 117-121.	2.7	39
26	Electrical properties and flux performance of composite ceramic hydrogen separation membranes. Journal of Materials Chemistry A, 2015, 3, 5392-5401.	10.3	37
27	Probing Grain-Boundary Chemistry and Electronic Structure in Proton-Conducting Oxides by Atom Probe Tomography. Nano Letters, 2016, 16, 6924-6930.	9.1	36
28	Preparation of dense mixed electron- and proton-conducting ceramic composite materials using solid-state reactive sintering: BaCe0.8Y0.1M0.1O3â°Î'〓Ce0.8Y0.1M0.1O2â°Î′ (M=Y, Yb, Er, Eu). Journal of Materials Science, 2014, 49, 4332-4340.	3.7	35
29	Conductivity and hydration trends in disordered fluorite and pyrochlore oxides: A study on lanthanum cerate–zirconate based compounds. Solid State Ionics, 2012, 229, 26-32.	2.7	32
30	Effects of A- and B-site (co-)acceptor doping on the structure and proton conductivity of LaNbO4. Solid State Ionics, 2012, 213, 45-52.	2.7	30
31	Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3â^Î^ Sr0.95Ti0.9Nb0.1O3â^Î^(BCZY27 STN95). Journal of Materials Science, 2013, 48, 6177-6185.	3.7	25
32	Equilibrium and transient conductivity for gadolium-doped ceria under large perturbations: II. Modeling. Solid State Ionics, 2014, 268, 198-207.	2.7	22
33	Double perovskite Ba2FeMoO6â [~] δas fuel electrode for protonic-ceramic membranes. Solid State Ionics, 2017, 306, 97-103.	2.7	22
34	Chemical expansion in BaZr _{0.9â^'<i>x</i>} Ce _{<i>x</i>} Y _{0.1} O _{3â^'Î} (<i>x</i> = 0 and)	Tj ĘŢQq0 (O OʻrgBT /Over
35	Society, 2018, 101, 1298-1309. Synthesis and proton incorporation in BaCe0.9â^x Zr x Y0.1O3â^î. Journal of Applied Electrochemistry, 2009, 39, 553-557.	2.9	19
36	Assessing Substitution Effects on Surface Chemistry by in Situ Ambient Pressure X-ray Photoelectron Spectroscopy on Perovskite Thin Films, BaCe _{<i>x</i>} Y _{O_{O_{2.95} (<i>x</i> = 0;) Tj I}}	ЕТ Q̂ q̂ 0 0 0	rgB1 /Overloc

#	Article	IF	CITATIONS
37	Thermodynamic Insights for Electrochemical Hydrogen Compression with Proton-Conducting Membranes. Membranes, 2019, 9, 77.	3.0	18
38	Chemo-Thermo-Mechanical Coupling in Protonic Ceramic Fuel Cells from Fabrication to Operation. Journal of the Electrochemical Society, 2019, 166, F1007-F1015.	2.9	18
39	Synthesis, Sintering, and Electrical Properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext>BaCe Journal of Nanomaterials, 2008, 2008, 1-5.</mml:mtext></mml:mrow></mml:mrow></mml:mrow></mml:math>	< ⊉ਯ ml:mt	e xt >
40	Infiltrated Lanthanum Nickelate Cathodes for Use with BaCe _{0.2} Zr _{0.7} Y _{0.1} O _{3 â^î Î} Proton Conducting Electrolytes. Journal of the Electrochemical Society, 2014, 161, F717-F723.	2.9	15
41	High-Performance La0.5Ba0.5Co1/3Mn1/3Fe1/3O3â^Î-BaZr1â^zYzO3â^Î Cathode Composites via an Exsolution Mechanism for Protonic Ceramic Fuel Cells. Inorganics, 2018, 6, 83.	2.7	13
42	Quantification of grain boundary defect chemistry in a mixed protonâ€electron conducting oxide composite. Journal of the American Ceramic Society, 2020, 103, 3217-3230.	3.8	13
43	Equilibrium and transient conductivity for gadolinium-doped ceria under large perturbations: I. Experiments. Solid State Ionics, 2014, 265, 22-28.	2.7	12
44	Faradaic efficiency in protonic-ceramic electrolysis cells. JPhys Energy, 2022, 4, 014002.	5.3	12
45	Thermogravimetric analysis of InCl3 sublimation at atmospheric pressure. Thermochimica Acta, 2015, 622, 55-63.	2.7	11
46	Synthesis and characterization of BaGa2O4 and Ba3Co2O6(CO3)0.6 compounds in the search of alternative materials for Proton Ceramic Fuel Cell (PCFC). Solid State Sciences, 2017, 71, 61-68.	3.2	10
47	Conductivity behavior of BaZr0.9Dy0.1O3â^î^. Solid State Ionics, 2018, 314, 25-29.	2.7	10
48	Nano-LaCoO3 infiltrated BaZr0.8Y0.2O3â^' electrodes for steam splitting in protonic ceramic electrolysis cells., 2022, 1, 100003.		10
49	Galvanic hydrogen pumping performance of copper electrodes fabricated by electroless plating on a BaZr0.9-Ce Y0.1O3- proton-conducting ceramic membrane. Solid State Ionics, 2018, 317, 256-262.	2.7	9
50	Large-area protonic ceramic cells for hydrogen purification. Separation and Purification Technology, 2022, 295, 121301.	7.9	9
51	Enhanced reducibility and electronic conductivity of Nb or W doped Ce0.9Gd0.1O1.95â^Î. Solid State lonics, 2015, 269, 51-56.	2.7	8
52	Particle atomic layer deposition of alumina for sintering yttriaâ€stabilized cubic zirconia. Journal of the American Ceramic Society, 2019, 102, 2283-2293.	3.8	8
53	Structural and electrical properties of BaZr0.7Ce0.2Y0.1O3â^Î proton conducting ceramic fabricated by spark plasma sintering. Solid State Ionics, 2020, 345, 115118.	2.7	8
54	The influence of the sintering temperature on BaZrO·7CeO·2YO·1O3·Î′ proton conductors prepared by Spark Plasma Sintering. Ceramics International, 2021, 47, 15349-15356.	4.8	8

#	Article	IF	CITATIONS
55	Comparing the Expected Stack Cost of Next Generation Intermediate Temperature Protonic Ceramic Fuel Cells with Solid Oxide Fuel Cell Technology. ECS Transactions, 2017, 78, 1963-1972.	0.5	7
56	Fabrication of reducing atmosphere electrodes (fuel electrodes) by electroless plating of copper on BaZr0.9â^'xCexY0.1O3â^'δâ€" A proton-conducting ceramic. International Journal of Hydrogen Energy, 2017, 42, 16911-16919.	7.1	7
57	Non stoichiometry and lattice expansion of BaZr0.9Dy0.1O3-δin oxidizing atmospheres. Solid State Ionics, 2019, 330, 33-39.	2.7	7
58	The effect of grain size on the hydration of BaZr _{0.9} Y _{0.1} O _{3â^$\hat{1}$} proton conductor studied by ambient pressure X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 136-143.	2.8	7
59	Ceramic/Metal-Supported, Tubular, Molten Carbonate Membranes for High-Temperature CO2 Separations. Industrial & Engineering Chemistry Research, 2020, 59, 13706-13715.	3.7	7
60	Slip Casting and Solid-State Reactive Sintering of BCZY(BaCexZr0.9â^'xY0.1O3â^'d)-NiO/BCZY Half-Cells. Membranes, 2022, 12, 242.	3.0	7
61	Effects of exsolution on the stability and morphology of Ni nanoparticles on BZY thin films. Acta Materialia, 2022, 228, 117752.	7.9	7
62	Planar proton-conducting ceramic cells for hydrogen extraction: Mechanical properties, electrochemical performance and up-scaling. International Journal of Hydrogen Energy, 2022, 47, 6745-6754.	7.1	6
63	Fabrication of Yttrium-Doped Barium Zirconate for High Performance Protonic Ceramic Membranes. , 0, , .		5
64	Low Temperature Water–Gas Shift Reaction: Interactions of Steam and CO with Ceria Treated with Different Oxidizing and Reducing Environments. Catalysis Letters, 2015, 145, 533-540.	2.6	4
65	Dense Inorganic Membranes for Hydrogen Separation. , 2017, , 271-363.		4
66	High performance fuel electrodes fabricated by electroless plating of copper on BaZr 0.8 Ce 0.1 Y 0.1 O 3-1 proton-conducting ceramic. Journal of Power Sources, 2017, 365, 399-407.	7.8	4
67	Electrochemistry of proton-conducting ceramic materials and cells. Journal of Solid State Electrochemistry, 2020, 24, 1445-1446.	2.5	4
68	Modeling Electro-Chemo-Mechanical Behaviors within the Dense BaZr0.8Y0.2O3â^Î^Protonic-Ceramic Membrane in a Long Tubular Electrochemical Cell. Membranes, 2021, 11, 378.	3.0	4
69	The effect of Ni and Fe on the decomposition of yttrium doped barium zirconate thin films. Scripta Materialia, 2021, 201, 113948.	5.2	4
70	Estimating Ni valence with magnetometry in solidâ€state reactive sintered yttriumâ€doped barium zirconate. Journal of the American Ceramic Society, 2022, 105, 159-168.	3.8	4
71	Behavior of BaCe0.9 \hat{a}^x Zr x Y0.103 \hat{a}^y \hat{l}^z in water and ethanol suspensions. Journal of Materials Science, 2014, 49, 2588-2595.	3.7	3
72	Evolution of Copper Electrodes Fabricated by Electroless Plating on BaZr0.7Ce0.2Y0.1O3-Î′ Proton-Conducting Ceramic Membrane: From Deposition to Testing in Methane. Ceramics, 2018, 1, 261-273.	2.6	2

#	Article	IF	CITATIONS
73	Channelized Substrates Made from BaZr0.75Ce0.05Y0.2O3â^'d Proton-Conducting Ceramic Polymer Clay. Membranes, 2019, 9, 130.	3.0	2
74	Ba _{0.5} Gd _{0.8} La _{0.7} Co ₂ O _{6â~δ} Infiltrated BaZr _{0.8} Y _{0.2} O _{3â~δ} Composite Oxygen Electrodes for Protonic Ceramic Cells. Journal of the Electrochemical Society, 2022, 169, 014513.	2.9	2
75	Perspectives on Technical Challenges and Scaling Considerations for Tubular Protonic-Ceramic Electrolysis Cells and Stacks. Journal of the Electrochemical Society, 2022, 169, 054525.	2.9	2
76	Ba _{0.5} Gd _{0.8} La _{0.7} Co ₂ O _{6â^Î^} Infiltrated BaZr _{0.8} Y _{0.2} O _{3-Î^} Composite Oxygen Electrodes for Protonic Ceramic Electrolysis Cells. ECS Transactions, 2021, 102, 3-16.	0.5	1
77	Nondestructive 3D Nanoscale X-ray Imaging of Solid Oxide Fuel Cells in the Laboratory. Microscopy and Microanalysis, 2019, 25, 382-383.	0.4	O
78	Self-contained Electrochemical Process to Produce Pure Compressed Hydrogen from Hydrocarbons and Steam Without an External Energy Supply. Journal of the Electrochemical Society, 2020, 167, 104512.	2.9	0
79	Highly Conductive Ceramics with Multiple Types of Mobile Charge Carriers. Crystals, 2021, 11, 1148.	2.2	0