
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227166/publications.pdf Version: 2024-02-01

TAKEMASA TSUU

#	Article	IF	CITATIONS
1	Identification of Claudin 6-specific HLA class I- and HLA class II-restricted T cell receptors for cellular immunotherapy in ovarian cancer. Oncolmmunology, 2022, 11, 2020983.	4.6	5
2	Metabolic adaptation of ovarian tumors in patients treated with an IDO1 inhibitor constrains antitumor immune responses. Science Translational Medicine, 2022, 14, eabg8402.	12.4	28
3	Tcf-1 protects anti-tumor TCR-engineered CD8+ T-cells from GzmB mediated self-destruction. Cancer Immunology, Immunotherapy, 2022, 71, 2881-2898.	4.2	4
4	Tissue residency of memory CD8+ TÂcells matters in shaping immunogenicity of ovarian cancer. Cancer Cell, 2022, 40, 452-454.	16.8	2
5	WHSC1/NSD2 regulates immune infiltration in prostate cancer. , 2021, 9, e001374.		17
6	IDO1 Expression in Ovarian Cancer Induces PD-1 in T Cells via Aryl Hydrocarbon Receptor Activation. Frontiers in Immunology, 2021, 12, 678999.	4.8	40
7	Clonality and antigen-specific responses shape the prognostic effects of tumor-infiltrating T cells in ovarian cancer. Oncotarget, 2020, 11, 2669-2683.	1.8	14
8	Efficient identification of neoantigen-specific T-cell responses in advanced human ovarian cancer. , 2019, 7, 156.		65
9	Neoantigens retention in patient derived xenograft models mediates autologous T cells activation in ovarian cancer. Oncolmmunology, 2019, 8, e1586042.	4.6	16
10	A rare population of tumor antigen-specific CD4+CD8+ double-positive αβ T lymphocytes uniquely provide CD8-independent TCR genes for engineering therapeutic T cells. , 2019, 7, 7.		14
11	Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunology Research, 2018, 6, 594-604.	3.4	9
12	HLA superfamily assignment is a predictor of immune response to cancer testis antigens and survival in ovarian cancer. Gynecologic Oncology, 2016, 142, 158-162.	1.4	8
13	Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses. Scientific Reports, 2015, 5, 14896.	3.3	70
14	Adoptive T-Cell Therapy Is a Promising Salvage Approach for Advanced or Recurrent Metastatic Cervical Cancer. Journal of Clinical Oncology, 2015, 33, 1521-1522.	1.6	25
15	Molecular Structure and Internal Rotation of CF ₃ Group of Methyl Trifluoroacetate: Gas Electron Diffraction, Microwave Spectroscopy, and Quantum Chemical Calculation Studies. Journal of Physical Chemistry A, 2015, 119, 1774-1786.	2.5	12
16	Immuno-stimultory/regulatory gene expression patterns in advanced ovarian cancer. Genes and Cancer, 2015, 6, 399-407.	1.9	4
17	Nonclassical Antigen-Processing Pathways Are Required for MHC Class II–Restricted Direct Tumor Recognition by NY-ESO-1–Specific CD4+ T Cells. Cancer Immunology Research, 2014, 2, 341-350.	3.4	41
18	Epigenetic Potentiation of NY-ESO-1 Vaccine Therapy in Human Ovarian Cancer. Cancer Immunology Research. 2014. 2. 37-49.	3.4	168

#	Article	IF	CITATIONS
19	Expression and Immune Responses to MAGE Antigens Predict Survival in Epithelial Ovarian Cancer. PLoS ONE, 2014, 9, e104099.	2.5	65
20	Differential Antigen Expression Profile Predicts Immunoreactive Subset of Advanced Ovarian Cancers. PLoS ONE, 2014, 9, e111586.	2.5	10
21	Effect of Montanide and Poly-ICLC Adjuvant on Human Self/Tumor Antigen-Specific CD4+ T Cells in Phase I Overlapping Long Peptide Vaccine Trial. Cancer Immunology Research, 2013, 1, 340-350.	3.4	62
22	Enhancement of Tumor-Reactive Cytotoxic CD4+ T-cell Responses after Ipilimumab Treatment in Four Advanced Melanoma Patients. Cancer Immunology Research, 2013, 1, 235-244.	3.4	109
23	Overcoming regulatory Tâ€cell suppression by a lyophilized preparation of <i>Streptococcus pyogenes</i> . European Journal of Immunology, 2013, 43, 989-1000.	2.9	8
24	Heat Shock Protein 90-Mediated Peptide-Selective Presentation of Cytosolic Tumor Antigen for Direct Recognition of Tumors by CD4+ T Cells. Journal of Immunology, 2012, 188, 3851-3858.	0.8	35
25	Split T-cell tolerance as a guide for the development of tumor antigen-specific immunotherapy. Oncolmmunology, 2012, 1, 405-407.	4.6	5
26	Phase I Trial of Overlapping Long Peptides from a Tumor Self-Antigen and Poly-ICLC Shows Rapid Induction of Integrated Immune Response in Ovarian Cancer Patients. Clinical Cancer Research, 2012, 18, 6497-6508.	7.0	245
27	Split T Cell Tolerance against a Self/Tumor Antigen: Spontaneous CD4+ but Not CD8+ T Cell Responses against p53 in Cancer Patients and Healthy Donors. PLoS ONE, 2011, 6, e23651.	2.5	15
28	Antibody-Targeted NY-ESO-1 to Mannose Receptor or DEC-205 In Vitro Elicits Dual Human CD8+ and CD4+ T Cell Responses with Broad Antigen Specificity. Journal of Immunology, 2011, 186, 1218-1227.	0.8	98
29	Tumor-infiltrating NY-ESO-1–specific CD8 ⁺ T cells are negatively regulated by LAC-3 and PD-1 in human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7875-7880.	7.1	744
30	Characterization of Preexisting MAGE-A3-Specific CD4+ T Cells in Cancer Patients and Healthy Individuals and Their Activation by Protein Vaccination. Journal of Immunology, 2009, 183, 4800-4808.	0.8	33
31	Induction of regulatory T cell–resistant helper CD4+ T cells by bacterial vector. Blood, 2008, 111, 1404-1412.	1.4	28
32	Inducing Efficient Cross-priming Using Antigen-coated Yeast Particles. Journal of Immunotherapy, 2008, 31, 607-619.	2.4	15
33	DFT Calculations and IR Studies on 2-Hydroxy-1,4-naphthoquinone and Its 3-Substituted Derivatives. Bulletin of the Chemical Society of Japan, 2007, 80, 321-323.	3.2	19
34	Theoretical and Experimental Studies on the Ground- and Excited-State Dipole Moments of 1,4-Naphthoquinone and Its Derivatives. Bulletin of the Chemical Society of Japan, 2007, 80, 1103-1113.	3.2	5
35	1α,25â€Dihydroxyvitamin D3 downmodulates the functional differentiation of Th1 cytokineâ€conditioned bone marrowâ€derived dendritic cells beneficial for cytotoxic T lymphocyte generation. Cancer Science, 2006, 97, 139-147.	3.9	23
36	Influence of CD4+CD25+ Regulatory T Cells on Low/High-Avidity CD4+ T Cells following Peptide Vaccination. Journal of Immunology, 2006, 176, 6340-6346.	0.8	52

#	Article	IF	CITATIONS
37	Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood, 2005, 106, 470-476.	1.4	106
38	Immunosteroid as a regulator for Th1/Th2 balance: Its possible role in autoimmune diseases. Autoimmunity, 2005, 38, 369-375.	2.6	50
39	Potentiation of Tumor Eradication by Adoptive Immunotherapy with T-cell Receptor Gene-Transduced T-Helper Type 1 Cells. Cancer Research, 2004, 64, 386-390.	0.9	65
40	Generation and Targeting of Human Tumor-Specific Tc1 and Th1 Cells Transduced with a Lentivirus Containing a Chimeric Immunoglobulin T-Cell Receptor. Cancer Research, 2004, 64, 1490-1495.	0.9	51
41	STAT6-mediated signaling in Th2-dependent allergic asthma: critical role for the development of eosinophilia, airway hyper-responsiveness and mucus hypersecretion, distinct from its role in Th2 differentiation. International Immunology, 2004, 16, 1497-1505.	4.0	65
42	Liposome-Encapsulated CpG Oligodeoxynucleotides as a Potent Adjuvant for Inducing Type 1 Innate Immunity. Cancer Research, 2004, 64, 8754-8760.	0.9	115
43	Unexpected role of TNF-Â in graft versus host reaction (GVHR): donor-derived TNF-Â suppresses GVHR via inhibition of IFN-Â-dependent donor type-1 immunity. International Immunology, 2004, 16, 811-817.	4.0	8
44	The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Science, 2004, 95, 697-703.	3.9	137
45	Generation of leukemia-specific T-helper type 1 cells applicable to human leukemia cell-therapy. Immunology Letters, 2004, 93, 17-25.	2.5	4
46	NKT cells act as regulatory cells rather than killer cells during activation of NK cell-mediated cytotoxicity by α-galactosylceramide in vivo. Immunology Letters, 2004, 95, 5-11.	2.5	27
47	IFN-γ-induced SOCS-1 regulates STAT6-dependent eotaxin production triggered by IL-4 and TNF-α. Biochemical and Biophysical Research Communications, 2004, 314, 468-475.	2.1	32
48	Successful elimination of memory-type CD8+ T cell subsets by the administration of anti-Gr-1 monoclonal antibody in vivo. Cellular Immunology, 2003, 224, 98-105.	3.0	62
49	Functional expression of the TrkC gene, encoding a high affinity receptor for NT-3, in antigen-specific T helper type 2 (Th2) cells. Immunology Letters, 2003, 88, 221-226.	2.5	28
50	Critical role of the Th1/Tc1 circuit for the generation of tumor-specific CTL during tumor eradication in vivo by Th1-cell therapy. Cancer Science, 2003, 94, 924-928.	3.9	54
51	An efficient method to prepare T cell receptor gene-transduced cytotoxic T lymphocytes type 1 applicable to tumor gene cell-therapy. Cancer Science, 2003, 94, 389-393.	3.9	8
52	Differential regulation of VLA-2 expression on Th1 and Th2 cells: a novel marker for the classification of Th subsets. International Immunology, 2003, 15, 701-710.	4.0	24
53	Molecular structure of 1,3-dichloropropanone by gas-phase electron diffraction combined with ab initio calculations. Journal of Molecular Structure, 2002, 612, 171-180.	3.6	6
54	Molecular Structure and Torsional Potential oftrans-Azobenzene. A Gas Electron Diffraction Study. Journal of Physical Chemistry A, 2001, 105, 9347-9353.	2.5	89

#	Article	IF	CITATIONS
55	Effects of Molecular Structure on the Stability of a Thermotropic Liquid Crystal. Gas Electron Diffraction Study of the Molecular Structure of Phenyl Benzoate. Journal of the American Chemical Society, 2001, 123, 6381-6387.	13.7	26
56	A Critical Role for Mouse CXC Chemokine(s) in Pulmonary Neutrophilia During Th Type 1-Dependent Airway Inflammation. Journal of Immunology, 2001, 167, 2349-2353.	0.8	54
57	Th1 Cytokine-Conditioned Bone Marrow-Derived Dendritic Cells Can Bypass the Requirement for Th Functions During the Generation of CD8+ CTL. Journal of Immunology, 2001, 167, 3687-3691.	0.8	13
58	Molecular structure and conformation of methyl methacrylate determined by gas electron diffraction. Journal of Molecular Structure, 1999, 475, 55-63.	3.6	31
59	Inductive and steric effects on the gas-phase structure of tert-butyl formate. Electron diffraction and theoretical investigations. Journal of Molecular Structure, 1998, 471, 275-281.	3.6	4