
Peter M Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1226866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An adaptive teosinte <i>mexicana</i> introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
2	Removal and Replacement of Endogenous Ligands from Lipid-Bound Proteins and Allergens. Journal of Visualized Experiments, 2021, , .	0.3	7
3	The mosquito protein AEG12 displays both cytolytic and antiviral properties via a common lipid transfer mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
4	Mixture analyses of air-sampled pollen extracts can accurately differentiate pollen taxa. Atmospheric Environment, 2020, 243, 117746.	4.1	7
5	Multiple roles of Bet v 1 ligands in allergen stabilization and modulation of endosomal protease activity. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2382-2393.	5.7	51
6	Influence of Hydrophobic Cargo Binding on the Structure, Stability, and Allergenicity of the Cockroach Allergen Bla g 1. Journal of Allergy and Clinical Immunology, 2019, 143, AB213.	2.9	2
7	Hydrophobic ligands influence the structure, stability, and processing of the major cockroach allergen Bla g 1. Scientific Reports, 2019, 9, 18294.	3.3	14
8	A Structural Model for Vinculin Insertion into PIP2-Containing Membranes and the Effect of Insertion on Vinculin Activation and Localization. Structure, 2017, 25, 264-275.	3.3	23
9	Role of PIP2-Dependent Membrane Interactions in Vinculin Activation, Motility and Force Transmission. Biophysical Journal, 2017, 112, 479a.	0.5	0
10	A metabolomic, geographic, and seasonal analysis of the contribution of pollen-derived adenosine to allergic sensitization. Metabolomics, 2016, 12, 1.	3.0	10
11	Role of PIP2-Dependent Membrane Interactions in Vinculin Activation, Motility and Force Transmission. Biophysical Journal, 2016, 110, 575a.	0.5	0
12	The Structural Basis of Actin Organization by Vinculin and Metavinculin. Journal of Molecular Biology, 2016, 428, 10-25.	4.2	49
13	New Models for Regulation of Vinculin by Actin and Phospholipids. Biophysical Journal, 2015, 108, 508a-509a.	0.5	0
14	Protein-Protein Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy. Methods in Molecular Biology, 2015, 1278, 267-279.	0.9	12
15	SketchBio: a scientist's 3D interface for molecular modeling and animation. BMC Bioinformatics, 2014, 15, 334.	2.6	7
16	Identification of an Actin Binding Surface on Vinculin that Mediates Mechanical Cell and Focal Adhesion Properties. Structure, 2014, 22, 697-706.	3.3	49
17	Phosphorylation at Y1065 in Vinculin Mediates Actin Bundling, Cell Spreading, and Mechanical Responses to Force. Biochemistry, 2014, 53, 5526-5536.	2.5	19
18	Vinculin and metavinculin: Oligomerization and interactions with Fâ€actin. FEBS Letters, 2013, 587, 1220-1229.	2.8	31

#	Article	lF	CITATIONS
19	Vinculin–actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. Journal of Cell Biology, 2013, 202, 163-177.	5.2	230
20	Combined computational design of a zincâ€binding site and a protein–protein interaction: One open zinc coordination site was not a robust hotspot for de novo ubiquitin binding. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1245-1255.	2.6	10
21	Phthalate Induction of CYP3A4 is Dependent on Glucocorticoid Regulation of PXR Expression. Toxicological Sciences, 2008, 103, 268-277.	3.1	57