Patrick Wincker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1226742/publications.pdf

Version: 2024-02-01

92 papers 21,753 citations

48 h-index

43973

93 g-index

122 all docs

122 docs citations

times ranked

122

23044 citing authors

#	Article	IF	CITATIONS
1	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	6.0	2,424
2	Structure and function of the global ocean microbiome. Science, 2015, 348, 1261359.	6.0	2,137
3	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	6.0	2,089
4	Eukaryotic plankton diversity in the sunlit ocean. Science, 2015, 348, 1261605.	6.0	1,551
5	The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488, 213-217.	13.7	1,049
6	Determinants of community structure in the global plankton interactome. Science, 2015, 348, 1262073.	6.0	842
7	Plankton networks driving carbon export in the oligotrophic ocean. Nature, 2016, 532, 465-470.	13.7	670
8	Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 2016, 537, 689-693.	13.7	629
9	Patterns and ecological drivers of ocean viral communities. Science, 2015, 348, 1261498.	6.0	617
10	Insights into global diatom distribution and diversity in the world's ocean. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1516-25.	3.3	561
11	Marine DNA Viral Macro- and Microdiversity from Pole to Pole. Cell, 2019, 177, 1109-1123.e14.	13.5	541
12	Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.	13.7	505
13	Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nature Communications, 2011, 2, 202.	5.8	481
14	Mapping the Epigenetic Basis of Complex Traits. Science, 2014, 343, 1145-1148.	6.0	403
15	A Holistic Approach to Marine Eco-Systems Biology. PLoS Biology, 2011, 9, e1001177.	2.6	353
16	The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 2018, 50, 772-777.	9.4	344
17	Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 2018, 4, 879-887.	4.7	316
18	Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Research, 2004, 32, 5766-5779.	6.5	308

#	Article	IF	Citations
19	A global ocean atlas of eukaryotic genes. Nature Communications, 2018, 9, 373.	5.8	297
20	Metagenomic <scp>16S rDNA I</scp> llumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 2014, 16, 2659-2671.	1.8	291
21	Unravelling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biology, 2008, 9, R90.	13.9	288
22	Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell, 2019, 179, 1084-1097.e21.	13.5	271
23	Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. Cell, 2019, 179, 1068-1083.e21.	13.5	268
24	Tara Oceans: towards global ocean ecosystems biology. Nature Reviews Microbiology, 2020, 18, 428-445.	13.6	227
25	Convergent genomic signatures of domestication in sheep and goats. Nature Communications, 2018, 9, 813.	5.8	220
26	Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME Journal, 2013, 7, 1678-1695.	4.4	185
27	Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics, 2015, 16, 327.	1.2	177
28	Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3365-74.	3.3	159
29	Environmental characteristics of Agulhas rings affect interocean plankton transport. Science, 2015, 348, 1261447.	6.0	158
30	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data, 2017, 4, 170093.	2.4	147
31	Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biology, 2012, 13, R74.	13.9	143
32	The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 2021, 598, 634-640.	13.7	142
33	Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nature Communications, 2019, 10, 3421.	5.8	134
34	Biosynthetic potential of the global ocean microbiome. Nature, 2022, 607, 111-118.	13.7	128
35	de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. GigaScience, 2017, 6, 1-13.	3.3	123
36	Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environmental Microbiology, 2016, 18, 609-626.	1.8	105

#	Article	IF	CITATIONS
37	Extreme Diversity of Diplonemid Eukaryotes in the Ocean. Current Biology, 2016, 26, 3060-3065.	1.8	105
38	An improved primer set and amplification protocol with increased specificity and sensitivity targeting the <i>Symbiodinium</i> ITS2 region. PeerJ, 2018, 6, e4816.	0.9	102
39	Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications, 2018, 9, 310.	5.8	101
40	Light color acclimation is a key process in the global ocean distribution of <i>Synechococcus cyanobacteria</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2010-E2019.	3.3	91
41	Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biology, 2014, 15, 546.	3.8	88
42	Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Communications Biology, 2021, 4, 1047.	2.0	86
43	Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 2021, 600, 86-92.	13.7	81
44	Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nature Ecology and Evolution, 2020, 4, 1639-1649.	3.4	78
45	Communityâ€Level Responses to Iron Availability in Open Ocean Plankton Ecosystems. Global Biogeochemical Cycles, 2019, 33, 391-419.	1.9	76
46	Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nature Communications, 2016, 7, 11071.	5.8	72
47	Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME Journal, 2015, 9, 1365-1377.	4.4	70
48	Long-read assembly of the <i>Brassica napus</i> reference genome Darmor-bzh. GigaScience, 2020, 9, .	3.3	64
49	Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nature Communications, 2021, 12, 4160.	5.8	58
50	Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nature Microbiology, 2021, 6, 1561-1574.	5.9	57
51	Survey of the green picoalga Bathycoccus genomes in the global ocean. Scientific Reports, 2016, 6, 37900.	1.6	54
52	Environmental vulnerability of the global ocean epipelagic plankton community interactome. Science Advances, 2021, 7, .	4.7	54
53	De novo assembly and annotation of three Leptosphaeria genomes using Oxford Nanopore MinION sequencing. Scientific Data, 2018, 5, 180235.	2.4	53
54	Worldwide Occurrence and Activity of the Reef-Building Coral Symbiont Symbiodinium in the Open Ocean. Current Biology, 2018, 28, 3625-3633.e3.	1.8	52

#	Article	IF	CITATIONS
55	Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics. Genome Research, 2020, 30, 647-659.	2.4	50
56	The Tara Pacific expeditionâ€"A pan-ecosystemic approach of the "-omics―complexity of coral reef holobionts across the Pacific Ocean. PLoS Biology, 2019, 17, e3000483.	2.6	48
57	Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Scientific Reports, 2017, 7, 41498.	1.6	47
58	Population genomics of apricots unravels domestication history and adaptive events. Nature Communications, 2021, 12, 3956.	5.8	45
59	Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018). Frontiers in Marine Science, 2019, 6, .	1.2	42
60	Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME Journal, 2022, 16, 927-936.	4.4	41
61	Diversity and ecological footprint of Global Ocean RNA viruses. Science, 2022, 376, 1202-1208.	6.0	41
62	Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Research, 2021, 49, D667-D676.	6.5	38
63	New insights into global biogeography, population structure and natural selection from the genome of the epipelagic copepod <i>Oithona</i> . Molecular Ecology, 2017, 26, 4467-4482.	2.0	37
64	Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria. Frontiers in Microbiology, 2020, 11, 567431.	1.5	37
65	An Assessment of Environmental Metabarcoding Protocols Aiming at Favoring Contemporary Biodiversity in Inventories of Deep-Sea Communities. Frontiers in Marine Science, 2020, 7, .	1.2	36
66	Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. ISME Journal, 2016, 10, 1134-1146.	4.4	35
67	Hunting down fungal secretomes using liquidâ€phase IEF prior to high resolution 2â€DE. Electrophoresis, 2009, 30, 4118-4136.	1.3	31
68	Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. ISME Journal, 2021, 15, 3455-3467.	4.4	29
69	A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Molecular Ecology Resources, 2023, 23, 16-40.	2.2	29
70	TE-Tracker: systematic identification of transposition events through whole-genome resequencing. BMC Bioinformatics, 2014, 15, 377.	1.2	27
71	Priorities for ocean microbiome research. Nature Microbiology, 2022, 7, 937-947.	5.9	27
72	The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes. Nucleic Acids Research, 2022, 50, W516-W526.	6.5	26

#	Article	IF	CITATIONS
73	Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience, 2022, 11 , .	3.3	26
74	Macroscale patterns of oceanic zooplankton composition and size structure. Scientific Reports, 2021, 11, 15714.	1.6	24
75	Meta-Omics Reveals Genetic Flexibility of Diatom Nitrogen Transporters in Response to Environmental Changes. Molecular Biology and Evolution, 2019, 36, 2522-2535.	3.5	23
76	Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine (i) Synechococcus (i). FEMS Microbiology Ecology, 2014, 88, 231-249.	1.3	21
77	Genome Resolved Biogeography of Mamiellales. Genes, 2020, 11, 66.	1.0	21
78	Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nature Climate Change, 2022, 12, 393-401.	8.1	21
79	Comparative genomics reveals new functional insights in uncultured MAST species. ISME Journal, 2021, 15, 1767-1781.	4.4	18
80	Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA. Scientific Reports, 2021, 11, 7856.	1.6	18
81	Sequencing and Chromosome-Scale Assembly of Plant Genomes, Brassica rapa as a Use Case. Biology, 2021, 10, 732.	1.3	15
82	Tempo and drivers of plant diversification in the European mountain system. Nature Communications, 2022, 13, 2750.	5.8	15
83	A new sequence data set of <scp>SSU rRNA</scp> gene for Scleractinia and its phylogenetic and ecological applications. Molecular Ecology Resources, 2017, 17, 1054-1071.	2.2	13
84	Discovering millions of plankton genomic markers from the Atlantic Ocean and the Mediterranean Sea. Molecular Ecology Resources, 2019, 19, 526-535.	2.2	11
85	Chitin distribution in the <i>Oithona</i> digestive and reproductive systems revealed by fluorescence microscopy. PeerJ, 2018, 6, e4685.	0.9	10
86	A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Scientific Reports, 2020, 10, 15893.	1.6	9
87	Deep sequencing of amplified <scp><i>P</i></scp> <i>rasinovirus</i> and host green algal genes from an <scp>I</scp> ndian <scp>O</scp> cean transect reveals interacting trophic dependencies and new genotypes. Environmental Microbiology Reports, 2015, 7, 979-989.	1.0	8
88	Subtle limits to connectivity revealed by outlier loci within two divergent metapopulations of the deepâ€sea hydrothermal gastropod <i>Ifremeria nautilei</i> . Molecular Ecology, 2022, 31, 2796-2813.	2.0	7
89	Into the bloom: Molecular response of pelagic tunicates to fluctuating food availability. Molecular Ecology, 2020, 29, 292-307.	2.0	6
90	Marine DNA Viral Macro-and Micro-Diversity From Pole to Pole. SSRN Electronic Journal, 2019, , .	0.4	4

#	Article	IF	CITATIONS
91	A thousand plants' phylogeny. Nature Plants, 2019, 5, 1106-1107.	4.7	1
92	Male Differentiation in the Marine Copepod Oithona nana Reveals the Development of a New Nervous Ganglion and Lin12-Notch-Repeat Protein-Associated Proteolysis. Biology, 2021, 10, 657.	1.3	1