
Jakob Pernthaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology, 2005, 3, 537-546.	13.6	678
2	Comparative 16S rRNA Analysis of Lake Bacterioplankton Reveals Clobally Distributed Phylogenetic Clusters Including an Abundant Group of Actinobacteria. Applied and Environmental Microbiology, 2000, 66, 5053-5065.	1.4	593
3	Culturability and In Situ Abundance of Pelagic Bacteria from the North Sea. Applied and Environmental Microbiology, 2000, 66, 3044-3051.	1.4	577
4	A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research, 2010, 20, 947-959.	2.4	425
5	Changes in Bacterial Community Composition and Dynamics and Viral Mortality Rates Associated with Enhanced Flagellate Grazing in a Mesoeutrophic Reservoir. Applied and Environmental Microbiology, 2001, 67, 2723-2733.	1.4	340
6	Combining Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization and Microautoradiography To Detect Substrate Utilization by Bacteria and Archaea in the Deep Ocean. Applied and Environmental Microbiology, 2004, 70, 4411-4414.	1.4	316
7	Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change, 2012, 2, 809-813.	8.1	300
8	An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2003, 69, 2928-2935.	1.4	279
9	Seasonal Community and Population Dynamics of Pelagic Bacteria and Archaea in a High Mountain Lake. Applied and Environmental Microbiology, 1998, 64, 4299-4306.	1.4	263
10	Succession of Pelagic Marine Bacteria during Enrichment: a Close Look at Cultivation-Induced Shifts. Applied and Environmental Microbiology, 2000, 66, 4634-4640.	1.4	241
11	Isolation of Novel Pelagic Bacteria from the German Bight and Their Seasonal Contributions to Surface Picoplankton. Applied and Environmental Microbiology, 2001, 67, 5134-5142.	1.4	238
12	Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environmental Microbiology, 2004, 6, 242-253.	1.8	238
13	Morphological and Compositional Changes in a Planktonic Bacterial Community in Response to Enhanced Protozoan Grazing. Applied and Environmental Microbiology, 1999, 65, 1241-1250.	1.4	238
14	Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME Journal, 2018, 12, 185-198.	4.4	227
15	Abundances, Identity, and Growth State of Actinobacteria in Mountain Lakes of Different UV Transparency. Applied and Environmental Microbiology, 2005, 71, 5551-5559.	1.4	220
16	Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environmental Microbiology, 2009, 11, 2078-2093.	1.8	219
17	Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiology Ecology, 2007, 60, 98-112.	1.3	195
18	High local and global diversity of Flavobacteria in marine plankton. Environmental Microbiology, 2007. 9. 1253-1266.	1.8	176

Jakob Pernthaler

#	Article	IF	CITATIONS
19	Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria â€~that rule the waves' (LD12). ISME Journal, 2011, 5, 1242-1252.	4.4	173
20	Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environmental Microbiology, 2006, 8, 2022-2030.	1.8	170
21	Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environmental Microbiology, 2007, 9, 2417-2429.	1.8	143
22	Members of a Readily Enriched β-Proteobacterial Clade Are Common in Surface Waters of a Humic Lake. Applied and Environmental Microbiology, 2003, 69, 6550-6559.	1.4	138
23	The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME Journal, 2015, 9, 2442-2453.	4.4	137
24	Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration. Water Research, 2013, 47, 2085-2095.	5.3	136
25	<i>In situ</i> substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME Journal, 2013, 7, 896-907.	4.4	131
26	Predator-Specific Enrichment of Actinobacteria from a Cosmopolitan Freshwater Clade in Mixed Continuous Culture. Applied and Environmental Microbiology, 2001, 67, 2145-2155.	1.4	125
27	Are Readily Culturable Bacteria in Coastal North Sea Waters Suppressed by Selective Grazing Mortality?. Applied and Environmental Microbiology, 2003, 69, 2624-2630.	1.4	109
28	Rapid successions affect microbial <i>N</i> â€acetylâ€glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environmental Microbiology, 2012, 14, 794-806.	1.8	100
29	Automated Enumeration of Groups of Marine Picoplankton after Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2003, 69, 2631-2637.	1.4	94
30	Bloom of Filamentous Bacteria in a Mesotrophic Lake: Identity and Potential Controlling Mechanism. Applied and Environmental Microbiology, 2004, 70, 6272-6281.	1.4	87
31	Spatioâ€ŧemporal niche separation of planktonic <i>Betaproteobacteria</i> in an oligoâ€mesotrophic lake. Environmental Microbiology, 2008, 10, 2074-2086.	1.8	87
32	Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environmental Microbiology, 2009, 11, 1854-1865.	1.8	84
33	Incorporation of Glucose under Anoxic Conditions by Bacterioplankton from Coastal North Sea Surface Waters. Applied and Environmental Microbiology, 2005, 71, 1709-1716.	1.4	80
34	A small population of planktonic <i>Flavobacteria</i> with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environmental Microbiology, 2009, 11, 2676-2686.	1.8	80
35	Network of Interactions Between Ciliates and Phytoplankton During Spring. Frontiers in Microbiology, 2015, 6, 1289.	1.5	80
36	Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study. Frontiers in Microbiology, 2018, 9, 317.	1.5	78

JAKOB PERNTHALER

#	Article	IF	CITATIONS
37	Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environmental Microbiology, 2010, 12, 364-377.	1.8	74
38	Concentration-Dependent Patterns of Leucine Incorporation by Coastal Picoplankton. Applied and Environmental Microbiology, 2006, 72, 2141-2147.	1.4	69
39	Microbes Enriched in Seawater after Addition of Coral Mucus. Applied and Environmental Microbiology, 2008, 74, 3274-3278.	1.4	66
40	Growth Patterns of Two Marine Isolates: Adaptations to Substrate Patchiness?. Applied and Environmental Microbiology, 2001, 67, 4077-4083.	1.4	65
41	Blooms of Single Bacterial Species in a Coastal Lagoon of the Southwestern Atlantic Ocean. Applied and Environmental Microbiology, 2006, 72, 6560-6568.	1.4	65
42	Bacterial epibionts of <i>Daphnia</i> : a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME Journal, 2014, 8, 1808-1819.	4.4	65
43	Bacterial and Eukaryotic Small-Subunit Amplicon Data Do Not Provide a Quantitative Picture of Microbial Communities, but They Are Reliable in the Context of Ecological Interpretations. MSphere, 2020, 5, .	1.3	65
44	Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environmental Microbiology, 2015, 17, 781-795.	1.8	59
45	Karst pools in subsurface environments: collectors of microbial diversity or temporary residence between habitat types. Environmental Microbiology, 2010, 12, 1061-1074.	1.8	55
46	Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyonâ€shaped, deep prealpine lake. Limnology and Oceanography, 2011, 56, 2027-2039.	1.6	55
47	Colonization of overlaying water by bacteria from dry river sediments. Environmental Microbiology, 2008, 10, 2760-2772.	1.8	54
48	Distribution and ecological preferences of the freshwater lineage <scp>L</scp> im <scp>A</scp> (genus <scp><i>L</i></scp> <i>imnohabitans)</i> revealed by a new double hybridization approach. Environmental Microbiology, 2017, 19, 1296-1309.	1.8	54
49	Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnology and Oceanography, 2010, 55, 846-856.	1.6	53
50	Coaggregation in a microbial predator–prey system affects competition and trophic transfer efficiency. Ecology, 2013, 94, 870-881.	1.5	50
51	Molecular effects of the cyanobacterial toxin cyanopeptolin (CP1020) occurring in algal blooms: Global transcriptome analysis in zebrafish embryos. Aquatic Toxicology, 2014, 149, 33-39.	1.9	50
52	Competition and niche separation of pelagic bacteria in freshwater habitats. Environmental Microbiology, 2017, 19, 2133-2150.	1.8	50
53	Quantitative dominance of seasonally persistent filamentous cyanobacteria (<i>Planktothrix) Tj ETQq1 1 0.7843 97-109.</i>	14 rgBT / 1.6	Overlock 10 49
54	Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiology Ecology, 2014, 89, 111-126.	1.3	48

JAKOB PERNTHALER

#	Article	IF	CITATIONS
55	Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates. FEMS Microbiology Ecology, 2010, 71, 281-290.	1.3	42
56	Scent of Danger: Floc Formation by a Freshwater Bacterium Is Induced by Supernatants from a Predator-Prey Coculture. Applied and Environmental Microbiology, 2010, 76, 6156-6163.	1.4	42
57	Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environmental Microbiology, 2013, 15, 2476-2488.	1.8	42
58	Grazing resistant freshwater bacteria profit from chitin and cellâ€wallâ€derived organic carbon. Environmental Microbiology, 2013, 15, 2019-2030.	1.8	42
59	Biodegradation of Microcystins during Gravity-Driven Membrane (GDM) Ultrafiltration. PLoS ONE, 2014, 9, e111794.	1.1	35
60	The toxicity and enzyme activity of a chlorine and sulfate containing aeruginosin isolated from a non-microcystin-producing Planktothrix strain. Harmful Algae, 2014, 39, 154-160.	2.2	35
61	Diurnal Variation of Cell Proliferation in Three Bacterial Taxa from Coastal North Sea Waters. Applied and Environmental Microbiology, 2005, 71, 4638-4644.	1.4	34
62	Seasonal dynamics and activity of typical freshwater bacteria in brackish waters of the Gulf of Gdańsk. Limnology and Oceanography, 2013, 58, 817-826.	1.6	34
63	Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environmental Microbiology, 2009, 11, 867-876.	1.8	33
64	Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic) Tj ETQqO	0 0 rgBT / 1.0	Ovgrlock 10 T
65	Ecology and Distribution of Thaumarchaea in the Deep Hypolimnion of Lake Maggiore. Archaea, 2015, 2015, 1-11.	2.3	32
66	Spatiotemporal distribution and activity patterns of bacteria from three phylogenetic groups in an oligomesotrophic lake. Limnology and Oceanography, 2010, 55, 846-856.	1.6	31
67	Comparative effects of nodularin and microcystin-LR in zebrafish: 1. Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1). Aquatic Toxicology, 2016, 171, 69-76.	1.9	30
68	Shortâ€ŧerm displacement of <i>Planktothrix rubescens</i> (cyanobacteria) in a preâ€alpine lake observed using an autonomous sampling platform. Limnology and Oceanography, 2013, 58, 1892-1906.	1.6	28
69	Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes. Systematic and Applied Microbiology, 2015, 38, 330-339.	1.2	27
70	Freshwater Microbial Communities. , 2013, , 97-112.		25
71	Prolongation, deepening and warming of the metalimnion change habitat conditions of the harmful filamentous cyanobacterium Planktothrix rubescens in a prealpine lake. Hydrobiologia, 2016, 776, 125-138	1.0	23

Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress. Aquatic Toxicology, 1.9 21 2016, 171, 77-87.

Jakob Pernthaler

#	Article	IF	CITATIONS
73	Automated Quantification and Sizing of Unbranched Filamentous Cyanobacteria by Model-Based Object-Oriented Image Analysis. Applied and Environmental Microbiology, 2010, 76, 1615-1622.	1.4	19
74	Fluorescence in situ hybridization and sequential catalyzed reporter deposition (2C-FISH) for the flow cytometric sorting of freshwater ultramicrobacteria. Frontiers in Microbiology, 2015, 6, 247.	1.5	19
75	Leucineâ€toâ€carbon empirical conversion factor experiments: does bacterial community structure have an influence?. Environmental Microbiology, 2010, 12, 2988-2997.	1.8	17
76	Priming of microbial microcystin degradation in biomass-fed gravity driven membrane filtration biofilms. Systematic and Applied Microbiology, 2018, 41, 221-231.	1.2	16
77	A novel ion-exclusion chromatography–mass spectrometry method to measure concentrations and cycling rates of carbohydrates and amino sugars in freshwaters. Journal of Chromatography A, 2014, 1365, 115-123.	1.8	15
78	High-throughput determination of dissolved free amino acids in unconcentrated freshwater by ion-pairing liquid chromatography and mass spectrometry. Journal of Chromatography A, 2016, 1440, 85-93.	1.8	15
79	Letting go: bacterial genome reduction solves the dilemma of adapting to predation mortality in a substrate-restricted environment. ISME Journal, 2017, 11, 2258-2266.	4.4	14
80	The biogeochemical variability of Arctic thermokarst ponds is reflected by stochastic and nicheâ€driven microbial community assembly processes. Environmental Microbiology, 2020, 22, 4847-4862.	1.8	13
81	Environmental Dynamics as a Structuring Factor for Microbial Carbon Utilization in a Subtropical Coastal Lagoon. Frontiers in Microbiology, 2013, 4, 14.	1.5	12
82	Spatiotemporal distribution and microbial assimilation of polyamines in a mesotrophic lake. Limnology and Oceanography, 2018, 63, 816-832.	1.6	11
83	Seasonality of the antibiotic resistance gene blaCTX-M in temperate Lake Maggiore. Hydrobiologia, 2019, 843, 143-153.	1.0	10
84	Suboptimal light conditions negatively affect the heterotrophy of <i>Planktothrix rubescens</i> but are beneficial for accompanying <i>Limnohabitans</i> spp Environmental Microbiology, 2012, 14, 765-778.	1.8	9
85	Enrichment of Omnivorous Cercozoan Nanoflagellates from Coastal Baltic Sea Waters. PLoS ONE, 2011, 6, e24415.	1.1	8
86	Seasonal patterns of microcystin-producing and non-producing Planktothrix rubescens genotypes in a deep pre-alpine lake. Harmful Algae, 2015, 50, 21-31.	2.2	8
87	Source Community and Assembly Processes Affect the Efficiency of Microbial Microcystin Degradation on Drinking Water Filtration Membranes. Frontiers in Microbiology, 2019, 10, 843.	1.5	4
88	Priming of microcystin degradation in carbon-amended membrane biofilm communities is promoted by oxygen-limited conditions. FEMS Microbiology Ecology, 2019, 95, .	1.3	3
89	Biomass addition alters community assembly in ultrafiltration membrane biofilms. Scientific Reports, 2020, 10, 11552.	1.6	2
90	Homeostatic regulation of dissolved labile organic substrates by consumption and release processes in a freshwater lake. Limnology and Oceanography, 2020, 65, 939-950.	1.6	2

#	Article	IF	CITATIONS
91	Spatial microheterogeneity and selective microbial consumption of dissolved free amino acids in an oligomesotrophic lake. Limnology and Oceanography, 2021, 66, 3728-3739.	1.6	1