Frank Dentener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Estimates of Sulfur, Nitrogen, and Ozone Total Deposition through Multi-Model and Measurement-Model Fusion Approaches. Environmental Science & Technology, 2022, 56, 2134-2142.	10.0	12
2	Harmful Algal Blooms in Chinese Coastal Waters Will Persist Due to Perturbed Nutrient Ratios. Environmental Science and Technology Letters, 2021, 8, 276-284.	8.7	59
3	Global and regional estimation of net anthropogenic nitrogen inputs (NANI). Geoderma, 2020, 361, 114066.	5.1	32
4	Lower air pollution during COVID-19 lock-down: improving models and methods estimating ozone impacts on crops. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200188.	3.4	17
5	Spatially Explicit Inventory of Sources of Nitrogen Inputs to the Yellow Sea, East China Sea, and South China Sea for the Period 1970–2010. Earth's Future, 2020, 8, e2020EF001516.	6.3	32
6	Estimating resilience of crop production systems: From theory to practice. Science of the Total Environment, 2020, 735, 139378.	8.0	42
7	Observed Northward Migration of Agroâ€Climate Zones in Europe Will Further Accelerate Under Climate Change. Earth's Future, 2019, 7, 1088-1101.	6.3	71
8	Contribution and uncertainty of sectorial and regional emissions to regional and global PM _{2.5} health impacts. Atmospheric Chemistry and Physics, 2019, 19, 5165-5186.	4.9	56
9	The Exceptional 2018 European Water Seesaw Calls for Action on Adaptation. Earth's Future, 2019, 7, 652-663.	6.3	126
10	When Will Current Climate Extremes Affecting Maize Production Become the Norm?. Earth's Future, 2019, 7, 113-122.	6.3	74
11	EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth System Science Data, 2019, 11, 959-1002.	9.9	345
12	Ozone pollution will compromise efforts to increase global wheat production. Global Change Biology, 2018, 24, 3560-3574.	9.5	163
13	Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns. Atmospheric Environment, 2018, 184, 56-68.	4.1	50
14	The impact of future emission policies on tropospheric ozone using a parameterised approach. Atmospheric Chemistry and Physics, 2018, 18, 8953-8978.	4.9	47
15	TM5-FASST: a global atmospheric source–receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants. Atmospheric Chemistry and Physics, 2018, 18, 16173-16211.	4.9	79
16	Understanding and reproducing regional diversity of climate impacts on wheat yields: current approaches, challenges and data driven limitations. Environmental Research Letters, 2018, 13, 021001.	5.2	21
17	Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8, 914-920.	18.8	101
18	Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. Environmental Pollution, 2018, 243, 1287-1301.	7.5	83

FRANK DENTENER

#	Article	IF	CITATIONS
19	The effects of intercontinental emission sources on European air pollution levels. Atmospheric Chemistry and Physics, 2018, 18, 13655-13672.	4.9	34
20	Source contributions to sulfur and nitrogen deposition – an HTAP II multi-model study on hemispheric transport. Atmospheric Chemistry and Physics, 2018, 18, 12223-12240.	4.9	21
21	Multi-model study of HTAPÂll on sulfur and nitrogen deposition. Atmospheric Chemistry and Physics, 2018, 18, 6847-6866.	4.9	49
22	HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors. Atmospheric Chemistry and Physics, 2018, 18, 10497-10520.	4.9	54
23	Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth System Science Data, 2018, 10, 1987-2013.	9.9	449
24	A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochemical Cycles, 2017, 31, 289-305.	4.9	146
25	Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 2017, 12, 064008.	5.2	420
26	Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 2017, 42, 346-358.	7.8	277
27	Technical note: Coordination and harmonization of the multi-scale, multi-model activities HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, boundary conditions, and modelÂoutputÂformats. Atmospheric Chemistry and Physics, 2017, 17, 1543-1555.	4.9	81
28	Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans. Atmospheric Chemistry and Physics, 2017, 17, 8189-8210.	4.9	26
29	Wildfire air pollution hazard during the 21stÂcentury. Atmospheric Chemistry and Physics, 2017, 17, 9223-9236.	4.9	66
30	Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7254-7283.	3.3	80
31	Global and regional radiative forcing from 20†% reductions in BC, OC and SO ₄ – an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2016, 16, 13579-13599.	4.9	42
32	Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 2016, 16, 3825-3841.	4.9	255
33	Air quality impacts of European wildfire emissions in a changing climate. Atmospheric Chemistry and Physics, 2016, 16, 5685-5703.	4.9	15
34	A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environmental Research Letters, 2016, 11, 124013.	5.2	72
35	Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios. Atmospheric Environment, 2016, 140, 577-591.	4.1	45
36	Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environmental Science & Technology, 2016, 50, 79-88.	10.0	886

FRANK DENTENER

#	Article	IF	CITATIONS
37	HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 2015, 15, 11411-11432.	4.9	647
38	The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality. Atmospheric Chemistry and Physics, 2015, 15, 1725-1743.	4.9	17
39	Household Cooking with Solid Fuels Contributes to Ambient PM _{2.5} Air Pollution and the Burden of Disease. Environmental Health Perspectives, 2014, 122, 1314-1320.	6.0	381
40	A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 2014, 93, 3-100.	4.1	650
41	Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Science of the Total Environment, 2014, 494-495, 337-350.	8.0	94
42	Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality. Air Quality, Atmosphere and Health, 2014, 7, 369-379.	3.3	64
43	Better air for better health: Forging synergies in policies for energy access, climate change and air pollution. Global Environmental Change, 2013, 23, 1122-1130.	7.8	99
44	The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130164.	4.0	1,114
45	Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmospheric Chemistry and Physics, 2013, 13, 7997-8018.	4.9	279
46	Effects of business-as-usual anthropogenic emissions on air quality. Atmospheric Chemistry and Physics, 2012, 12, 6915-6937.	4.9	76
47	A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, The, 2012, 380, 2224-2260.	13.7	9,397
48	Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide. Geophysical Research Letters, 2012, 39, .	4.0	57
49	Exposure Assessment for Estimation of the Global Burden of Disease Attributable to Outdoor Air Pollution. Environmental Science & Technology, 2012, 46, 652-660.	10.0	606
50	Environmental Modeling and Methods for Estimation of the Global Health Impacts of Air Pollution. Environmental Modeling and Assessment, 2012, 17, 613-622.	2.2	61
51	Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environmental Science & Technology, 2012, 46, 10390-10404.	10.0	187
52	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	4.9	839
53	N deposition as a threat to the World's protected areas under the Convention on Biological Diversity. Environmental Pollution, 2011, 159, 2280-2288.	7.5	83
54	Atmospheric deposition of nutrients and excess N formation in the North Atlantic. Biogeosciences, 2010, 7, 777-793.	3.3	40

FRANK DENTENER

#	Article	IF	CITATIONS
55	The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0. Geoscientific Model Development, 2010, 3, 445-473.	3.6	251
56	Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20, 30-59.	3.8	2,063
57	Global Biodiversity: Indicators of Recent Declines. Science, 2010, 328, 1164-1168.	12.6	3,642
58	Atmospheric composition change – global and regional air quality. Atmospheric Environment, 2009, 43, 5268-5350.	4.1	714
59	Global nitrogen deposition and carbon sinks. Nature Geoscience, 2008, 1, 430-437.	12.9	629
60	Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science, 2008, 320, 893-897.	12.6	964
61	A multi-model assessment of pollution transport to the Arctic. Atmospheric Chemistry and Physics, 2008, 8, 5353-5372.	4.9	419
62	The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmospheric Chemistry and Physics, 2007, 7, 4489-4501.	4.9	228
63	Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	846
64	The Global Atmospheric Environment for the Next Generation. Environmental Science & Technology, 2006, 40, 3586-3594.	10.0	338
65	Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 4321-4344.	4.9	912
66	The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030. Atmospheric Chemistry and Physics, 2005, 5, 1731-1755.	4.9	243
67	The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmospheric Chemistry and Physics, 2005, 5, 417-432.	4.9	490
68	The Global Distribution of Acidifying Wet Deposition. Environmental Science & amp; Technology, 2002, 36, 4382-4388.	10.0	248
69	Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research, 1997, 102, 15849-15866.	3.3	264