
John D Mccorvy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223699/publications.pdf Version: 2024-02-01

IOHN D MCCORVY

#	Article	IF	CITATIONS
1	Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016, 537, 185-190.	27.8	744
2	Structural Features for Functional Selectivity at Serotonin Receptors. Science, 2013, 340, 615-619.	12.6	600
3	PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nature Structural and Molecular Biology, 2015, 22, 362-369.	8.2	535
4	Structural Basis for Molecular Recognition at Serotonin Receptors. Science, 2013, 340, 610-614.	12.6	454
5	Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell, 2017, 168, 377-389.e12.	28.9	340
6	Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 2018, 172, 55-67.e15.	28.9	299
7	TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nature Chemical Biology, 2020, 16, 841-849.	8.0	281
8	Structure and function of serotonin G protein-coupled receptors. , 2015, 150, 129-142.		275
9	In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nature Chemical Biology, 2017, 13, 529-536.	8.0	230
10	A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature, 2021, 589, 474-479.	27.8	221
11	5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. Cell, 2018, 172, 719-730.e14.	28.9	185
12	Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 2020, 579, 609-614.	27.8	184
13	D ₄ dopamine receptor high-resolution structures enable the discovery of selective agonists. Science, 2017, 358, 381-386.	12.6	176
14	Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nature Chemical Biology, 2018, 14, 126-134.	8.0	141
15	Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature, 2019, 569, 284-288.	27.8	140
16	Distinct cortical and striatal actions of a β-arrestin–biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8178-E8186.	7.1	117
17	Structural determinants of 5-HT2B receptor activation and biased agonism. Nature Structural and Molecular Biology, 2018, 25, 787-796.	8.2	116
18	XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature, 2019, 569, 289-292.	27.8	106

JOHN D MCCORVY

#	Article	IF	CITATIONS
19	Structure, function and pharmacology of human itch GPCRs. Nature, 2021, 600, 170-175.	27.8	101
20	Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure–Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. Journal of Medicinal Chemistry, 2018, 61, 9841-9878.	6.4	95
21	The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand. Nature Communications, 2017, 8, 1910.	12.8	66
22	Investigation of the Structure–Activity Relationships of Psilocybin Analogues. ACS Pharmacology and Translational Science, 2021, 4, 533-542.	4.9	58
23	Discovery of G Protein-Biased D2 Dopamine Receptor Partial Agonists. Journal of Medicinal Chemistry, 2016, 59, 10601-10618.	6.4	49
24	Synthesis and Biological Evaluation of Tryptamines Found in Hallucinogenic Mushrooms: Norbaeocystin, Baeocystin, Norpsilocin, and Aeruginascin. Journal of Natural Products, 2020, 83, 461-467.	3.0	47
25	Detailed Characterization of the In Vitro Pharmacological and Pharmacokinetic Properties of <i>N</i> -(2-Hydroxybenzyl)-2,5-Dimethoxy-4-Cyanophenylethylamine (25CN-NBOH), a Highly Selective and Brain-Penetrant 5-HT _{2A} Receptor Agonist. Journal of Pharmacology and Experimental Therapeutics. 2017. 361. 441-453.	2.5	45
26	Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Science Translational Medicine, 2021, 13, .	12.4	41
27	Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSMâ€775). Drug Testing and Analysis, 2018, 10, 310-322.	2.6	40
28	High-throughput identification of G protein-coupled receptor modulators through affinity mass spectrometry screening. Chemical Science, 2018, 9, 3192-3199.	7.4	33
29	A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors. PLoS Pathogens, 2016, 12, e1005651.	4.7	30
30	Design and Discovery of Functionally Selective Serotonin 2C (5-HT _{2C}) Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 9866-9880.	6.4	28
31	Structure-based discovery of potent and selective melatonin receptor agonists. ELife, 2020, 9, .	6.0	28
32	Further Advances in Optimizing (2-Phenylcyclopropyl)methylamines as Novel Serotonin 2C Agonists: Effects on Hyperlocomotion, Prepulse Inhibition, and Cognition Models. Journal of Medicinal Chemistry, 2016, 59, 578-591.	6.4	26
33	Synthesis and pharmacological evaluation of N-benzyl substituted 4-bromo-2,5-dimethoxyphenethylamines as 5-HT2A/2C partial agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 3933-3937.	3.0	25
34	Pharmacological and biotransformation studies of 1-acyl-substituted derivatives of -lysergic acid diethylamide (LSD). Neuropharmacology, 2020, 172, 107856.	4.1	22
35	Designing Functionally Selective Noncatechol Dopamine D ₁ Receptor Agonists with Potent In Vivo Antiparkinsonian Activity. ACS Chemical Neuroscience, 2019, 10, 4160-4182.	3.5	21
36	Peptide/Receptor Co-evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21. Cell Reports, 2019, 28, 2567-2580.e6.	6.4	20

JOHN D MCCORVY

#	Article	IF	CITATIONS
37	Discovery of <i>N</i> -Substituted (2-Phenylcyclopropyl)methylamines as Functionally Selective Serotonin 2C Receptor Agonists for Potential Use as Antipsychotic Medications. Journal of Medicinal Chemistry, 2017, 60, 6273-6288.	6.4	19
38	Experimental evaluation of the generalized vibrational theory of G protein-coupled receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5595-5600.	7.1	16
39	Conformational selection guides β-arrestin recruitment at a biased G protein–coupled receptor. Science, 2022, 377, 222-228.	12.6	16
40	Defining Structure–Functional Selectivity Relationships (SFSR) for a Class of Non-Catechol Dopamine D ₁ Receptor Agonists. Journal of Medicinal Chemistry, 2019, 62, 3753-3772.	6.4	15
41	D ₂ Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine. Journal of Medicinal Chemistry, 2019, 62, 4755-4771.	6.4	15
42	(2-Aminopropyl)benzo[β]thiophenes (APBTs) are novel monoamine transporter ligands that lack stimulant effects but display psychedelic-like activity in mice. Neuropsychopharmacology, 2022, 47, 914-923.	5.4	8
43	Characterization of Dual-Acting A ₃ Adenosine Receptor Positive Allosteric Modulators That Preferentially Enhance Adenosine-Induced Gα _{i3} and Gα _{oA} Isoprotein Activation. ACS Pharmacology and Translational Science, 2022, 5, 625-641.	4.9	8
44	The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. Journal of Biological Chemistry, 2020, 295, 13927-13939.	3.4	7
45	Design of fluorinated cyclopropane derivatives of 2-phenylcyclopropylmethylamine leading to identification of a selective serotonin 2C (5-HT2C) receptor agonist without 5-HT2B agonism. European Journal of Medicinal Chemistry, 2019, 182, 111626.	5.5	3
46	Discovery of Highly Potent Serotonin 5-HT ₂ Receptor Agonists Inspired by Heteroyohimbine Natural Products. ACS Medicinal Chemistry Letters, 2022, 13, 648-657.	2.8	3
47	Nitazenes are potent muâ€opioid receptor agonists with profound respiratory depression. FASEB Journal, 2022, 36, .	0.5	1
48	Structural Basis of Nanobody Induced ACKR3 Inhibition. FASEB Journal, 2022, 36, .	0.5	0
49	Characterization of Novel A ₃ Adenosine Receptor Allosteric Modulators. FASEB Journal, 2022, 36, .	0.5	0