List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122340/publications.pdf Version: 2024-02-01

MELHONC

#	Article	IF	CITATIONS
1	Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature, 2010, 463, 689-692.	13.7	590
2	Mechanisms of Proton Conduction and Gating in Influenza M2 Proton Channels from Solid-State NMR. Science, 2010, 330, 505-508.	6.0	294
3	Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nature Structural and Molecular Biology, 2020, 27, 1202-1208.	3.6	294
4	Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR. Biochemistry, 2011, 50, 989-1000.	1.2	290
5	De novo design of a transmembrane Zn ²⁺ -transporting four-helix bundle. Science, 2014, 346, 1520-1524.	6.0	275
6	Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16242-16247.	3.3	228
7	Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-Angle-Spinning Solid-State NMR. Journal of the American Chemical Society, 2011, 133, 1534-1544.	6.6	228
8	Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance. Plant Physiology, 2015, 168, 871-884.	2.3	197
9	Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16444-16449.	3.3	196
10	Solid-state NMR spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	196
11	Membrane Protein Structure and Dynamics from NMR Spectroscopy. Annual Review of Physical Chemistry, 2012, 63, 1-24.	4.8	179
12	Phosphate-Mediated Arginine Insertion into Lipid Membranes and Pore Formation by a Cationic Membrane Peptide from Solid-State NMR. Journal of the American Chemical Society, 2007, 129, 11438-11446.	6.6	171
13	Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. Journal of Experimental Botany, 2016, 67, 503-514.	2.4	167
14	Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 ^{A903V} and CESA3 ^{T942I} of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4098-4103.	3.3	165
15	Membrane Protein Topology Probed by 1H Spin Diffusion from Lipids Using Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2002, 124, 874-883.	6.6	162
16	Solid-State NMR Investigations of Peptideâ^'Lipid Interaction and Orientation of a β-Sheet Antimicrobial Peptide, Protegrinâ€. Biochemistry, 2002, 41, 9852-9862.	1.2	158
17	Determination of Multiple φ-Torsion Angles in Proteins by Selective and Extensive 13C Labeling and Two-Dimensional Solid-State NMR. Journal of Magnetic Resonance, 1999, 139, 389-401.	1.2	153
18	The molecular structure of plant sporopollenin. Nature Plants, 2019, 5, 41-46.	4.7	150

#	Article	IF	CITATIONS
19	Solid-State NMR Investigation of the Dynamics of the Soluble and Membrane-Bound Colicin Ia Channel-Forming Domainâ€. Biochemistry, 2001, 40, 7662-7674.	1.2	149
20	NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel. Journal of the American Chemical Society, 2012, 134, 3703-3713.	6.6	143
21	Icephobic Surfaces Induced by Interfacial Nonfrozen Water. ACS Applied Materials & Interfaces, 2017, 9, 4202-4214.	4.0	138
22	Coupling Amplification in 2D MAS NMR and Its Application to Torsion Angle Determination in Peptides. Journal of Magnetic Resonance, 1997, 129, 85-92.	1.2	137
23	2D and 3D15Nâ^'13Câ^'13C NMR Chemical Shift Correlation Spectroscopy of Solids:Â Assignment of MAS Spectra of Peptides. Journal of the American Chemical Society, 2000, 122, 10979-10990.	6.6	135
24	Structure of Amantadine-Bound M2 Transmembrane Peptide of Influenza A in Lipid Bilayers from Magic-Angle-Spinning Solid-State NMR: The Role of Ser31 in Amantadine Binding. Journal of Molecular Biology, 2009, 385, 1127-1141.	2.0	135
25	Pectin–Cellulose Interactions in the <i>Arabidopsis</i> Primary Cell Wall from Two-Dimensional Magic-Angle-Spinning Solid-State Nuclear Magnetic Resonance. Biochemistry, 2012, 51, 9846-9856.	1.2	135
26	Determining the Orientation of Uniaxially Rotating Membrane Proteins Using Unoriented Samples:Â A2H,13C, and15N Solid-State NMR Investigation of the Dynamics and Orientation of a Transmembrane Helical Bundle. Journal of the American Chemical Society, 2007, 129, 5719-5729.	6.6	133
27	Orientation and Dynamics of an Antimicrobial Peptide in the Lipid Bilayer by Solid-State NMR Spectroscopy. Biophysical Journal, 2001, 81, 2203-2214.	0.2	131
28	Roles of Arginine and Lysine Residues in the Translocation of a Cell-Penetrating Peptide from ¹³ C, ³¹ P, and ¹⁹ F Solid-State NMR. Biochemistry, 2009, 48, 4587-4595.	1.2	131
29	Molecular Dynamics Simulation Directed Rational Design of Inhibitors Targeting Drug-Resistant Mutants of Influenza A Virus M2. Journal of the American Chemical Society, 2011, 133, 12834-12841.	6.6	127
30	Solid-State NMR Investigation of the Depth of Insertion of Protegrin-1 in Lipid Bilayers Using Paramagnetic Mn2+. Biophysical Journal, 2003, 85, 2363-2373.	0.2	126
31	Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR. Journal of Biomolecular NMR, 1999, 15, 1-14.	1.6	125
32	Structure and Function of the Influenza A M2 Proton Channel. Biochemistry, 2009, 48, 7356-7364.	1.2	125
33	Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Science, 2012, 21, 1620-1633.	3.1	124
34	Resonance Assignments for Solid Peptides by Dipolar-Mediated13C/15N Correlation Solid-State NMR. Journal of the American Chemical Society, 1998, 120, 7113-7114.	6.6	121
35	Investigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 7355-7364.	1.2	116
36	Water–Polysaccharide Interactions in the Primary Cell Wall of <i>Arabidopsis thaliana</i> from Polarization Transfer Solid-State NMR. Journal of the American Chemical Society, 2014, 136, 10399-10409.	6.6	111

#	Article	IF	CITATIONS
37	Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1483-1488.	3.3	109
38	Structure and Dynamics of Membrane Proteins from Solid-State NMR. Annual Review of Biophysics, 2018, 47, 201-222.	4.5	105
39	Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6191-6196.	3.3	102
40	Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy. Journal of the American Chemical Society, 2011, 133, 4274-4284.	6.6	100
41	Determination of Peptide Oligomerization in Lipid Bilayers Using19F Spin Diffusion NMR. Journal of the American Chemical Society, 2005, 127, 4477-4483.	6.6	98
42	Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. Biomacromolecules, 2016, 17, 2210-2222.	2.6	94
43	Membrane-Bound Dynamic Structure of an Arginine-Rich Cell-Penetrating Peptide, the Protein Transduction Domain of HIV TAT, from Solid-State NMR. Biochemistry, 2010, 49, 6009-6020.	1.2	92
44	Discovery of Spiro-Piperidine Inhibitors and Their Modulation of the Dynamics of the M2 Proton Channel from Influenza A Virus. Journal of the American Chemical Society, 2009, 131, 8066-8076.	6.6	87
45	Structure and dynamics of cationic membrane peptides and proteins: Insights from solidâ€state NMR. Protein Science, 2011, 20, 641-655.	3.1	87
46	Measurement of Carbonâ^'Proton Dipolar Couplings in Liquid Crystals by Local Dipolar Field NMR Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 18696-18701.	2.9	85
47	Determination of the Oligomeric Number and Intermolecular Distances of Membrane Protein Assemblies by Anisotropic1H-Driven Spin Diffusion NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 7242-7251.	6.6	85
48	Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12946-12951.	3.3	85
49	Structure, Topology, and Dynamics of Membrane Peptides and Proteins from Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 10340-10351.	1.2	83
50	Immobilization and Aggregation of the Antimicrobial Peptide Protegrin-1 in Lipid Bilayers Investigated by Solid-State NMR. Biochemistry, 2003, 42, 13725-13734.	1.2	82
51	Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems. Plant Physiology, 2017, 175, 1593-1607.	2.3	82
52	Acid activation mechanism of the influenza A M2 proton channel. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6955-E6964.	3.3	81
53	Membrane-Dependent Effects of a Cytoplasmic Helix on the Structure and Drug Binding of the Influenza Virus M2 Protein. Journal of the American Chemical Society, 2011, 133, 11572-11579.	6.6	80
54	Asymmetric Insertion of Membrane Proteins in Lipid Bilayers by Solid-State NMR Paramagnetic Relaxation Enhancement: A Cell-Penetrating Peptide Example. Journal of the American Chemical Society, 2008, 130, 8856-8864.	6.6	79

#	Article	IF	CITATIONS
55	Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. Journal of the American Chemical Society, 2016, 138, 9840-9852.	6.6	79
56	Solid-State Dipolar INADEQUATE NMR Spectroscopy with a Large Double-Quantum Spectral Width. Journal of Magnetic Resonance, 1999, 136, 86-91.	1.2	78
57	Conformational plasticity of the influenza A M2 transmembrane helix in lipid bilayers under varying pH, drug binding, and membrane thickness. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 415-423.	1.4	77
58	Water Distribution, Dynamics, and Interactions with Alzheimer's β-Amyloid Fibrils Investigated by Solid-State NMR. Journal of the American Chemical Society, 2017, 139, 6242-6252.	6.6	77
59	Oligomeric Structure, Dynamics, and Orientation of Membrane Proteins from Solid-State NMR. Structure, 2006, 14, 1731-1740.	1.6	76
60	The Membrane-Bound Structure and Topology of a Human α-Defensin Indicate a Dimer Pore Mechanism for Membrane Disruption. Biochemistry, 2010, 49, 9770-9782.	1.2	76
61	In vitro ON4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16357-16366.	3.3	76
62	Structure and mechanism of β-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy. Molecular BioSystems, 2009, 5, 317.	2.9	75
63	Waterâ ^{~^} Protein Interactions of an Arginine-Rich Membrane Peptide in Lipid Bilayers Investigated by Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 4063-4069.	1.2	74
64	Multidimensional solidâ€state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly ¹³ Câ€labeled <i>Arabidopsis</i> primary cell walls. Magnetic Resonance in Chemistry, 2012, 50, 539-550.	1.1	74
65	Conformational Changes of an Ion Channel Detected Through Waterâ^'Protein Interactions Using Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 2378-2384.	6.6	73
66	Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of <i>Arabidopsis thaliana</i> : Insights from Solid-State NMR. Biomacromolecules, 2017, 18, 2937-2950.	2.6	69
67	Solid-State NMR Investigation of the Selective Disruption of Lipid Membranes by Protegrin-1â€. Biochemistry, 2004, 43, 13839-13848.	1.2	68
68	Structure and Dynamics of <i>Brachypodium</i> Primary Cell Wall Polysaccharides from Two-Dimensional ¹³ C Solid-State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2014, 53, 2840-2854.	1.2	68
69	Hydrogen-Bonding Partner of the Proton-Conducting Histidine in the Influenza M2 Proton Channel Revealed From ¹ H Chemical Shifts. Journal of the American Chemical Society, 2012, 134, 14753-14755.	6.6	65
70	Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. Journal of Biomolecular NMR, 2016, 64, 223-237.	1.6	65
71	pH-Dependent Conformation, Dynamics, and Aromatic Interaction ofÂtheÂGating Tryptophan Residue of the Influenza M2 Proton Channel fromÂSolid-State NMR. Biophysical Journal, 2013, 104, 1698-1708. 	0.2	64
72	Magic-Angle-Spinning NMR Techniques for Measuring Long-Range Distances in Biological Macromolecules. Accounts of Chemical Research, 2013, 46, 2154-2163.	7.6	63

#	Article	IF	CITATIONS
73	Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR. Journal of the American Chemical Society, 2013, 135, 9885-9897.	6.6	63
74	Immobilization of the Influenza A M2 Transmembrane Peptide in Virus Envelopeâ^'Mimetic Lipid Membranes: A Solid-State NMR Investigation. Biochemistry, 2009, 48, 6361-6368.	1.2	61
75	Measurement and Assignment of Long-Range Câ^'H Dipolar Couplings in Liquid Crystals by Two-Dimensional NMR Spectroscopy. The Journal of Physical Chemistry, 1996, 100, 14815-14822.	2.9	58
76	Solid-State NMR Investigation of the Selective Perturbation of Lipid Bilayers by the Cyclic Antimicrobial Peptide RTD-1â€. Biochemistry, 2004, 43, 9800-9812.	1.2	58
77	Effects of Guanidinium–Phosphate Hydrogen Bonding on the Membraneâ€Bound Structure and Activity of an Arginineâ€Rich Membrane Peptide from Solidâ€ S tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 3202-3205.	7.2	58
78	NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide. Biophysical Journal, 2012, 102, 787-794.	0.2	58
79	Probing membrane protein structure using water polarization transfer solid-state NMR. Journal of Magnetic Resonance, 2014, 247, 118-127.	1.2	58
80	The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations. Nature Structural and Molecular Biology, 2019, 26, 592-598.	3.6	58
81	Backbone and side chain assignment strategies for multiply labeled membrane peptides and proteins in the solid state. Journal of Magnetic Resonance, 2003, 160, 1-12.	1.2	57
82	Membrane-disruptive abilities of β-hairpin antimicrobial peptides correlate with conformation and activity: A 31P and 1H NMR study. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1716, 11-18.	1.4	57
83	Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt's lymphoma cells. Journal of Cancer Research and Clinical Oncology, 2006, 132, 1-8.	1.2	57
84	Cationic membrane peptides: atomic-level insight of structure–activity relationships from solid-state NMR. Amino Acids, 2013, 44, 821-833.	1.2	57
85	Side-Chain Conformation of the M2 Transmembrane Peptide Proton Channel of Influenza A Virus from ¹⁹ F Solid-State NMR. Journal of Physical Chemistry B, 2007, 111, 10825-10832.	1.2	56
86	Impact of acidic pH on plant cell wall polysaccharide structure and dynamics: insights into the mechanism of acid growth in plants from solid-state NMR. Cellulose, 2019, 26, 291-304.	2.4	56
87	Solid-State NMR Determination of13Cα Chemical Shift Anisotropies for the Identification of Protein Secondary Structure. Journal of the American Chemical Society, 2000, 122, 3762-3770.	6.6	55
88	Compensation for pulse imperfections in rotational-echo double-resonance NMR by composite pulses and EXORCYCLE. Journal of Magnetic Resonance, 2004, 168, 358-365.	1.2	55
89	Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. Journal of Biomolecular NMR, 2013, 56, 155-167.	1.6	55
90	Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nuclear Magnetic Resonance, 2016, 78, 56-63.	1.5	55

#	Article	IF	CITATIONS
91	Viral fusion protein transmembrane domain adopts β-strand structure to facilitate membrane topological changes for virus–cell fusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10926-10931.	3.3	54
92	Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nature Structural and Molecular Biology, 2020, 27, 160-167.	3.6	52
93	Conformational analysis of the fullâ€length M2 protein of the influenza A virus using solidâ€state NMR. Protein Science, 2013, 22, 1623-1638.	3.1	51
94	The Influenza M2 Cytoplasmic Tail Changes the Proton-Exchange Equilibria and the Backbone Conformation of the Transmembrane Histidine Residue to Facilitate Proton Conduction. Journal of the American Chemical Society, 2015, 137, 6067-6077.	6.6	50
95	Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release. International Immunopharmacology, 2018, 56, 242-248.	1.7	50
96	Solid-State NMR Studies of the Structure, Dynamics, and Assembly of β-Sheet Membrane Peptides and α-Helical Membrane Proteins with Antibiotic Activities. Accounts of Chemical Research, 2006, 39, 176-183.	7.6	49
97	Peptide–lipid interactions of the β-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1285-1291.	1.4	49
98	Solid-State NMR Investigation of the Conformation, Proton Conduction, and Hydration of the Influenza B Virus M2 Transmembrane Proton Channel. Journal of the American Chemical Society, 2016, 138, 8143-8155.	6.6	49
99	Fast Magic-Angle-Spinning ¹⁹ F Spin Exchange NMR for Determining Nanometer ¹⁹ F– ¹⁹ F Distances in Proteins and Pharmaceutical Compounds. Journal of Physical Chemistry B, 2018, 122, 2900-2911.	1.2	49
100	Determining Cholesterol Binding to Membrane Proteins by Cholesterol ¹³ C Labeling in Yeast and Dynamic Nuclear Polarization NMR. Journal of the American Chemical Society, 2018, 140, 15437-15449.	6.6	48
101	Orientation determination of membrane-disruptive proteins using powder samples and rotational diffusion: A simple solid-state NMR approach. Chemical Physics Letters, 2006, 432, 296-300.	1.2	47
102	Dynamic Structure of Disulfide-Removed Linear Analogs of Tachyplesin-I in the Lipid Bilayer from Solid-State NMRâ€. Biochemistry, 2008, 47, 1105-1116.	1.2	46
103	Paramagnetic Cu(II) for Probing Membrane Protein Structure and Function: Inhibition Mechanism of the Influenza M2 Proton Channel. Journal of the American Chemical Society, 2012, 134, 8693-8702.	6.6	46
104	Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study. Cellulose, 2018, 25, 23-36.	2.4	45
105	Direct Determination of Hydroxymethyl Conformations of Plant Cell Wall Cellulose Using ¹ H Polarization Transfer Solid-State NMR. Biomacromolecules, 2018, 19, 1485-1497.	2.6	44
106	Rapid measurement of long-range distances in proteins by multidimensional 13C–19F REDOR NMR under fast magic-angle spinning. Journal of Biomolecular NMR, 2018, 71, 31-43.	1.6	44
107	Resonance Assignment and Three-Dimensional Structure Determination of a Human α-Defensin, HNP-1, by Solid-State NMR. Journal of Molecular Biology, 2010, 397, 408-422.	2.0	43
108	Structures of β-Hairpin Antimicrobial Protegrin Peptides in Lipopolysaccharide Membranes: Mechanism of Gram Selectivity Obtained from Solid-State Nuclear Magnetic Resonance. Biochemistry, 2011, 50, 2072-2083.	1.2	43

#	Article	IF	CITATIONS
109	Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes from Solid-State NMR. Journal of the American Chemical Society, 2014, 136, 2611-2624.	6.6	43
110	Oligomeric Structure and Three-Dimensional Fold of the HIV gp41 Membrane-Proximal External Region and Transmembrane Domain in Phospholipid Bilayers. Journal of the American Chemical Society, 2018, 140, 8246-8259.	6.6	43
111	Trehalose-protected lipid membranes for determining membrane protein structure and insertion. Journal of Magnetic Resonance, 2007, 184, 222-227.	1.2	42
112	Reversible Sheet–Turn Conformational Change of a Cell-Penetrating Peptide in Lipid Bilayers Studied by Solid-State NMR. Journal of Molecular Biology, 2008, 381, 1133-1144.	2.0	41
113	The Target of β-Expansin EXPB1 in Maize Cell Walls from Binding and Solid-State NMR Studies. Plant Physiology, 2016, 172, 2107-2119.	2.3	41
114	Spectrally edited 2D 13C13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials. Journal of Magnetic Resonance, 2013, 234, 112-124.	1.2	40
115	Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers. Nature Communications, 2021, 12, 172.	5.8	40
116	Investigation of the dynamics of an elastin-mimetic polypeptide using solid-state NMR. Magnetic Resonance in Chemistry, 2004, 42, 267-275.	1.1	39
117	Long-Range1Hâ^'19F Distance Measurement in Peptides by Solid-State NMR. Journal of the American Chemical Society, 2004, 126, 12754-12755.	6.6	39
118	Orientation, Dynamics, and Lipid Interaction of an Antimicrobial Arylamide Investigated by ¹⁹ F and ³¹ P Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 9197-9205.	6.6	39
119	Effects of amantadine on the dynamics of membrane-bound influenza A M2 transmembrane peptide studied by NMR relaxation. Journal of Biomolecular NMR, 2009, 45, 185-196.	1.6	38
120	Intermolecular Packing and Alignment in an Ordered β-Hairpin Antimicrobial Peptide Aggregate from 2D Solid-State NMR. Journal of the American Chemical Society, 2005, 127, 13919-13927.	6.6	37
121	Determination of Long-Range Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven ¹⁹ F– ¹⁹ F Dipolar Recoupling NMR. Journal of Physical Chemistry B, 2018, 122, 9302-9313.	1.2	37
122	Conformational Disorder of Membrane Peptides Investigated from Solid-State NMR Line Widths and Line Shapes. Journal of Physical Chemistry B, 2011, 115, 10758-10767.	1.2	36
123	Membrane-Dependent Conformation, Dynamics, and Lipid Interactions of the Fusion Peptide of the Paramyxovirus PIV5 from Solid-State NMR. Journal of Molecular Biology, 2013, 425, 563-576.	2.0	36
124	Chemical ligation of the influenza <scp>M</scp> 2 protein for solidâ€state <scp>NMR</scp> characterization of the cytoplasmic domain. Protein Science, 2015, 24, 1087-1099.	3.1	36
125	Relaxation-compensated difference spin diffusion NMR for detecting 13C–13C long-range correlations in proteins and polysaccharides. Journal of Biomolecular NMR, 2015, 61, 97-107.	1.6	36
126	Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using ³¹ P Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 4993-5001.	1.2	36

#	Article	IF	CITATIONS
127	Identification and mobility of deuterated residues in peptides and proteins by – solid-state NMR. Chemical Physics Letters, 1999, 300, 213-220.	1.2	35
128	Solid-State NMR and Quantum Chemical Investigations of13CαShielding Tensor Magnitudes and Orientations in Peptides: Determining φ and Ï^ Torsion Angles. Journal of the American Chemical Society, 2005, 127, 6451-6458.	6.6	34
129	High-Resolution Orientation and Depth of Insertion of the Voltage-Sensing S4 Helix of a Potassium Channel in Lipid Bilayers. Journal of Molecular Biology, 2010, 401, 642-652.	2.0	34
130	Conformational changes of colicin la channel-forming domain upon membrane binding: a solid-state NMR study. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 159-170.	1.4	33
131	Measurements of Carbon to Amide-Proton Distances by Câ^'H Dipolar Recoupling with15N NMR Detection. Journal of the American Chemical Society, 2003, 125, 5648-5649.	6.6	33
132	A 2H Solid-State NMR Study of Lipid Clustering by Cationic Antimicrobial and Cell-Penetrating Peptides in Model Bacterial Membranes. Biophysical Journal, 2013, 105, 2333-2342.	0.2	31
133	Efficient β-Sheet Identification in Proteins by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2000, 122, 11320-11327.	6.6	30
134	Determination of Cα Chemical Shift Tensor Orientation in Peptides by Dipolar-Modulated Chemical Shift Recoupling NMR Spectroscopy. Journal of the American Chemical Society, 2002, 124, 2730-2738.	6.6	30
135	Orientation of a β-Hairpin Antimicrobial Peptide in Lipid Bilayers from Two-Dimensional Dipolar Chemical-Shift Correlation NMR. Biophysical Journal, 2006, 90, 3616-3624.	0.2	30
136	2D 1H–31P solid-state NMR studies of the dependence of inter-bilayer water dynamics on lipid headgroup structure and membrane peptides. Journal of Magnetic Resonance, 2009, 196, 39-47.	1.2	30
137	3D 13C–13C–13C correlation NMR for de novo distance determination of solid proteins and application to a human α-defensin. Journal of Magnetic Resonance, 2010, 202, 203-210.	1.2	30
138	High-Sensitivity Detection of Nanometer ¹ H– ¹⁹ F Distances for Protein Structure Determination by ¹ H-Detected Fast MAS NMR. Journal of Physical Chemistry B, 2019, 123, 4387-4391.	1.2	30
139	Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance. Biochemistry, 2020, 59, 2237-2248.	1.2	30
140	Inclusion of the C-Terminal Domain in the β-Sheet Core of Heparin-Fibrillized Three-Repeat Tau Protein Revealed by Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2021, 143, 7839-7851.	6.6	30
141	Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State Nuclear Magnetic Resonance of Oriented Bicelles. Biochemistry, 2015, 54, 2214-2226.	1.2	29
142	Structural Basis for Asymmetric Conductance of the Influenza M2 Proton Channel Investigated by Solid-State NMR Spectroscopy. Journal of Molecular Biology, 2017, 429, 2192-2210.	2.0	29
143	From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chemical Reviews, 2022, 122, 9848-9879.	23.0	29
144	Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria. Journal of Biomolecular NMR, 2016, 64, 115-130.	1.6	28

#	Article	IF	CITATIONS
145	Bacterial Phosphate Granules Contain Cyclic Polyphosphates: Evidence from ³¹ P Solid-State NMR. Journal of the American Chemical Society, 2020, 142, 18407-18421.	6.6	28
146	Fluent molecular mixing of Tau isoforms in Alzheimer's disease neurofibrillary tangles. Nature Communications, 2022, 13, .	5.8	27
147	Sensitivity-Enhanced Static 15N NMR of Solids by 1H Indirect Detection. Journal of Magnetic Resonance, 2001, 150, 43-48.	1.2	25
148	Large Structure Rearrangement of Colicin Ia Channel Domain after Membrane Binding from 2D13C Spin Diffusion NMR. Journal of the American Chemical Society, 2005, 127, 6402-6408.	6.6	25
149	Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination. Journal of Biomolecular NMR, 2012, 54, 343-353.	1.6	25
150	Transport-Relevant Protein Conformational Dynamics and Water Dynamics on Multiple Time Scales in an Archetypal Proton Channel: Insights from Solid-State NMR. Journal of the American Chemical Society, 2018, 140, 1514-1524.	6.6	25
151	Direct Observation of Cholesterol Dimers and Tetramers in Lipid Bilayers. Journal of Physical Chemistry B, 2021, 125, 1825-1837.	1.2	25
152	Arginine Dynamics in a Membraneâ€Bound Cationic Betaâ€Hairpin Peptide from Solidâ€State NMR. ChemBioChem, 2008, 9, 1487-1492.	1.3	24
153	Solid-State NMR Spin Diffusion for Measurement of Membrane-Bound Peptide Structure:  Gramicidin A. Biochemistry, 2004, 43, 7899-7906.	1.2	23
154	High-sensitivity protein solid-state NMR spectroscopy. Current Opinion in Structural Biology, 2019, 58, 183-190.	2.6	23
155	Colgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nature Plants, 2022, 8, 656-669.	4.7	23
156	Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature. Journal of Biomolecular NMR, 2014, 59, 263-277.	1.6	22
157	Protonation equilibria and pore-opening structure of the dual-histidine influenza B virus M2 transmembrane proton channel from solid-state NMR. Journal of Biological Chemistry, 2017, 292, 17876-17884.	1.6	22
158	Binding Sites of a Positron Emission Tomography Imaging Agent in Alzheimer's β-Amyloid Fibrils Studied Using ¹⁹ F Solid-State NMR. Journal of the American Chemical Society, 2022, 144, 1416-1430.	6.6	22
159	High-Sensitivity2H NMR in Solids by1H Detection. Journal of the American Chemical Society, 2001, 123, 7168-7169.	6.6	21
160	Accurate Measurement of Methyl 13C Chemical Shifts by Solid-State NMR for the Determination of Protein Side Chain Conformation: The Influenza A M2 Transmembrane Peptide as an Example. Journal of the American Chemical Society, 2009, 131, 7806-7816.	6.6	21
161	Effects of arginine density on the membrane-bound structure of a cationic antimicrobial peptide from solid-state NMR. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 514-521.	1.4	21
162	Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. Journal of Molecular Biology, 2020, 432, 4705-4721.	2.0	21

#	Article	IF	CITATIONS
163	Two-dimensional 19F–13C correlation NMR for 19F resonance assignment of fluorinated proteins. Journal of Biomolecular NMR, 2020, 74, 193-204.	1.6	21
164	pH- and Calcium-Dependent Aromatic Network in the SARS-CoV-2 Envelope Protein. Journal of the American Chemical Society, 2022, 144, 6839-6850.	6.6	21
165	A structural and mechanistic study of π-clamp-mediated cysteine perfluoroarylation. Scientific Reports, 2017, 7, 7954.	1.6	20
166	Water orientation and dynamics in the closed and open influenza B virus M2 proton channels. Communications Biology, 2021, 4, 338.	2.0	20
167	Fast MAS 1H–13C correlation NMR for structural investigations of plant cell walls. Journal of Biomolecular NMR, 2019, 73, 661-674.	1.6	19
168	Xylan Structure and Dynamics in Native <i>Brachypodium</i> Grass Cell Walls Investigated by Solid-State NMR Spectroscopy. ACS Omega, 2021, 6, 15460-15471.	1.6	19
169	X–1H rotational-echo double-resonance NMR for torsion angle determination of peptides. Chemical Physics Letters, 2003, 380, 742-748.	1.2	18
170	2H–13C correlation solid-state NMR for investigating dynamics and water accessibilities of proteins and carbohydrates. Journal of Biomolecular NMR, 2017, 68, 257-270.	1.6	17
171	Elucidating ligand-bound structures of membrane proteins using solid-state NMR spectroscopy. Current Opinion in Structural Biology, 2019, 57, 103-109.	2.6	17
172	Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm. Journal of Biomolecular NMR, 2013, 57, 281-296.	1.6	16
173	Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins. Solid State Nuclear Magnetic Resonance, 2015, 72, 118-126.	1.5	16
174	Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity. Journal of Molecular Biology, 2018, 430, 695-709.	2.0	16
175	Elucidating Relayed Proton Transfer through a His–Trp–His Triad of a Transmembrane Proton Channel by Solid-State NMR. Journal of Molecular Biology, 2019, 431, 2554-2566.	2.0	16
176	The Transmembrane Conformation of the Influenza B Virus M2 Protein in Lipid Bilayers. Scientific Reports, 2019, 9, 3725.	1.6	16
177	High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport. Nature Communications, 2022, 13, 991.	5.8	15
178	Simultaneous extraction of multiple orientational constraints of membrane proteins by 13C-detected N–H dipolar couplings under magic angle spinning. Journal of Magnetic Resonance, 2008, 191, 219-225.	1.2	14
179	Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR. Journal of Biomolecular NMR, 2002, 22, 175-179.	1.6	13
180	Aggregation and Dynamics of Oligocholate Transporters in Phospholipid Bilayers Revealed by Solid-State NMR Spectroscopy. Langmuir, 2012, 28, 17071-17078.	1.6	13

#	Article	IF	CITATIONS
181	¹⁵ N and ¹ H Solid-State NMR Investigation of a Canonical Low-Barrier Hydrogen-Bond Compound: 1,8-Bis(dimethylamino)naphthalene. Journal of Physical Chemistry B, 2015, 119, 11581-11589.	1.2	12
182	Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain. Biochemistry, 2016, 55, 6787-6800.	1.2	12
183	Efficient ¹⁵ N– ¹³ C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. Journal of Physical Chemistry B, 2018, 122, 8367-8379.	1.2	12
184	C(alpha) chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR. Journal of Biomolecular NMR, 2002, 24, 51-62.	1.6	11
185	A 1D sensitivity-enhanced 1H spin diffusion experiment for determining membrane protein topology. Solid State Nuclear Magnetic Resonance, 2006, 29, 163-169.	1.5	11
186	Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers. Journal of Biological Chemistry, 2019, 294, 14732-14744.	1.6	11
187	Pulsed Third-Spin-Assisted Recoupling NMR for Obtaining Long-Range ¹³ C– ¹³ C and ¹⁵ N– ¹³ C Distance Restraints. Journal of Physical Chemistry B, 2020, 124, 7138-7151.	1.2	11
188	The Influenza M2 Ectodomain Regulates the Conformational Equilibria of the Transmembrane Proton Channel: Insights from Solid-State Nuclear Magnetic Resonance. Biochemistry, 2016, 55, 5387-5397.	1.2	10
189	Interplay between membrane curvature and protein conformational equilibrium investigated by solid-state NMR. Journal of Structural Biology, 2019, 206, 20-28.	1.3	10
190	Determination of Membrane Peptide Orientation by 1H-Detected 2H NMR Spectroscopy. Journal of Magnetic Resonance, 2002, 155, 244-250.	1.2	9
191	Homonuclear decoupled chemical shift anisotropy in doubly labeled peptides by selective-pulse solid-state NMR. Journal of Magnetic Resonance, 2003, 160, 114-119.	1.2	8
192	Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by 19F solid-state NMR. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183909.	1.4	8
193	Torsion Angle Determination by Solid-State NMR. , 2008, , 727-733.		7
194	Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from 31P NMR. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183723.	1.4	7
195	Conformation, Dynamics, and Insertion of a Noncysteineâ€Containing Protegrinâ€1 Analogue in Lipid Membranes from Solidâ€State NMR Spectroscopy. ChemBioChem, 2007, 8, 1877-1884.	1.3	6
196	High-resolution solid-state NMR of anisotropically mobile molecules under very low-power 1H decoupling and moderate magic-angle spinning. Journal of Magnetic Resonance, 2009, 199, 225-232.	1.2	5
197	CHAPTER 13. Structure and Dynamics of Polysaccharides in Plant Cell Walls from Solid-State NMR. New Developments in NMR, 0, , 290-304.	0.1	5
198	Intramolecular 1H–13C distance measurement in uniformly 13C, 15N labeled peptides by solid-state NMR. Solid State Nuclear Magnetic Resonance, 2012, 45-46, 51-58.	1.5	4

#	Article	IF	CITATIONS
199	Structurally Based Design of Glucagon Mutants That Inhibit Fibril Formation. Biochemistry, 2021, 60, 2033-2043.	1.2	4
200	Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers. Journal of Molecular Biology, 2022, 434, 167345.	2.0	4
201	Off-resonance 13C–2H REDOR NMR for site-resolved studies of molecular motion. Journal of Biomolecular NMR, 2021, 75, 335-345.	1.6	3
202	Comparative analysis of 13C chemical shifts of β-sheet amyloid proteins and outer membrane proteins. Journal of Biomolecular NMR, 2021, 75, 151-166.	1.6	2
203	Age-dependent aggregation of α-synuclein in the nervous system of gut-brain axis is associated with caspase-1 activation. Metabolic Brain Disease, 2022, 37, 1669-1681.	1.4	2