Igor Bray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223155/publications.pdf

Version: 2024-02-01

562	12,205	51	82
papers	citations	h-index	g-index
567	567	567	2666
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Convergent close-coupling calculations of electron-hydrogen scattering. Physical Review A, 1992, 46, 6995-7011.	2.5	467
2	Calculation of electron-helium scattering. Physical Review A, 1995, 52, 1279-1297.	2.5	314
3	Calculation of the total ionization cross section and spin asymmetry in electron-hydrogen scattering from threshold to 500 eV. Physical Review Letters, 1993, 70, 746-749.	7.8	208
4	Convergent close-coupling method for the calculation of electron scattering on hydrogenlike targets. Physical Review A, 1994, 49, 1066-1082.	2.5	208
5	Electrons and photons colliding with atoms: development and application of the convergent close-coupling method. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, R117-R146.	1.5	202
6	LXCat: an Openâ€Access, Webâ€Based Platform for Data Needed for Modeling Low Temperature Plasmas. Plasma Processes and Polymers, 2017, 14, 1600098.	3.0	188
7	Explicit demonstration of the convergence of the close-coupling method for a Coulomb three-body problem. Physical Review Letters, 1992, 69, 53-56.	7.8	170
8	Close-Coupling Approach to Coulomb Three-Body Problems. Physical Review Letters, 2002, 89, 273201.	7.8	170
9	Calculation of ionization within the close-coupling formalism. Physical Review A, 1996, 54, 2991-3004.	2.5	155
10	Convergent close-coupling calculations of electron - helium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 757-785.	1.5	130
11	Electron- and photon-impact atomic ionisation. Physics Reports, 2012, 520, 135-174.	25.6	127
12	Application of the CCC method to the calculation of helium double-photoionization triply differential cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L447-L453.	1.5	126
13	Absolute triple differential cross sections for photo-double ionization of helium - experiment and theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 5149-5160.	1.5	124
14	Electron-impact excitation and ionization cross sections for ground state and excited helium atoms. Atomic Data and Nuclear Data Tables, 2008, 94, 603-622.	2.4	123
15	Close-Coupling Theory of Ionization: Successes and Failures. Physical Review Letters, 1997, 78, 4721-4724.	7.8	122
16	Calculation of Electron Scattering on Hydrogenic Targets. Advances in Atomic, Molecular and Optical Physics, 1995, , 209-254.	2.3	120
17	Photoionization with excitation and double photoionization of the helium isoelectronic sequence. Physical Review A, 1998, 58, 4501-4511.	2.5	115
18	Mechanisms of Photo Double Ionization of Helium by 530 eV Photons. Physical Review Letters, 2002, 89, 033004.	7.8	111

#	Article	IF	Citations
19	Two-center convergent close-coupling approach to positron-hydrogen collisions. Physical Review A, 2002, 66, .	2.5	101
20	Physics book: CRYRING@ESR. European Physical Journal: Special Topics, 2016, 225, 797-882.	2.6	101
21	A comparative experimental and theoretical investigation of the electron-impact double ionization of He in the keV regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5047-5065.	1.5	100
22	Electron-impact ionization of atomic hydrogen from the 1S and 2S states. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L577-L583.	1.5	98
23	Convergent close-coupling calculations of electron scattering on helium-like atoms and ions: electron - beryllium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 5895-5913.	1.5	89
24	Calculation of double photoionization of helium using the convergent close-coupling method. Physical Review A, 1996, 54, R995-R997.	2.5	83
25	Fully Relativistic Convergent Close-Coupling Method for Excitation and Ionization Processes in Electron Collisions with Atoms and Ions. Physical Review Letters, 2008, 100, 113201.	7.8	79
26	Electron-impact ionization of helium for equal-energy-sharing kinematics. Physical Review A, 2005, 71, .	2.5	75
27	(e,2e) ionization of helium and the hydrogen molecule: signature of two-centre interference effects. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 025204.	1.5	74
28	Calculation of electron-impact ionization of lithium-like targets. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L247-L254.	1.5	73
29	Surface-integral formulation of scattering theory. Annals of Physics, 2009, 324, 1516-1546.	2.8	72
30	Low-energy electron-impact ionization of atomic hydrogen with equal energy outgoing electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 581-595.	1.5	71
31	Exact second-order distorted-wave calculation for hydrogen including second-order exchange. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 3861-3888.	1.5	68
32	Ultrafast electron dynamics in metals under laser irradiation. Physical Review B, 1999, 60, 3279-3288.	3.2	68
33	Physical Mechanisms and Scaling Laws of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > < mml:mi > < / mml:mi > < / mml:math > - Shell Double Photoionization. Physical Review Letters. 2009. 102, 073006.	7.8	68
34	Calculation of electron scattering on the He+ion. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, L831-L836.	1.5	66
35	Positron scattering from neon and argon. Physical Review A, 2011, 83, .	2.5	65
36	Convergent Close-Coupling Method: A "Complete Scattering Theory�. Physical Review Letters, 1996, 76, 2674-2677.	7.8	64

#	Article	IF	CITATIONS
37	Single ionization of helium by 102 eV electron impact: three-dimensional images for electron emission. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4097-4111.	1.5	64
38	Calculation of Electron Impact Total, Ionization, and Nonbreakup Cross Sections from the 3S and 3PS tates of Sodium. Physical Review Letters, 1994, 73, 1088-1090.	7.8	63
39	Convergent-close-coupling calculations for excitation and ionization processes of electron-hydrogen collisions in Debye plasmas. Physical Review A, 2010, 82, .	2.5	61
40	Simplified model of electron scattering using R-matrix methods. Physical Review A, 1995, 52, 1334-1343.	2.5	59
41	Electron– and positron–molecule scattering: development of the molecular convergent close-coupling method. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 123001.	1.5	59
42	Absolute Triply Differential (e,2e) Cross Section Measurements for H with Comparison to Theory. Physical Review Letters, 1997, 79, 1666-1669.	7.8	58
43	Recent progress in the description of positron scattering from atoms using the convergent close-coupling theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 222002.	1.5	58
44	Absolute triple differential cross section for electron-impact ionization of helium at 40 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 2103-2114.	1.5	57
45	Effect of the ground-state correlations on the helium double photoionization and ionization with excitation. Physical Review A, 1998, 57, 2590-2595.	2.5	57
46	Calculation of Circular Dichroism in Helium Double Photoionization. Physical Review Letters, 1998, 81, 4588-4591.	7.8	56
47	DATABASE FOR INELASTIC COLLISIONS OF LITHIUM ATOMS WITH ELECTRONS, PROTONS, AND MULTIPLY CHARGED IONS. Atomic Data and Nuclear Data Tables, 1999, 72, 239-273.	2.4	56
48	Relativistic convergent close-coupling method: Calculation of electron scattering from hydrogenlike ions. Physical Review A, 2009, 80, .	2.5	55
49	Antihydrogen Formation via Antiproton Scattering with Excited Positronium. Physical Review Letters, 2015, 114, 183201.	7.8	53
50	Calculation of triple-differential cross sections in electron scattering on atomic hydrogen. Physical Review A, 1994, 50, R2818-R2821.	2.5	52
51	Electron scattering by atomic hydrogen: Elastic and inelastic phenomena at 13.9–200 eV. Physical Review A, 1991, 44, 5586-5598.	2.5	51
52	Calculation of electron impact excitation and ionization of. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L109-L114.	1.5	50
53	S-wave model for electron-hydrogen scattering. Physical Review A, 1996, 54, R1002-R1005.	2.5	49
54	Electron-impact ionization of helium: A comprehensive experiment benchmarks theory. Physical Review A, $2011, 83, .$	2.5	49

#	Article	IF	CITATIONS
55	Frozen-core model of the double photoionization of beryllium. Physical Review A, 2001, 65, .	2.5	48
56	Coplanar equal energy-sharing 64.6 eV e - He triple differential cross sections. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L101-L108.	1.5	47
57	Complete Solution of Electronic Excitation and Ionization in Electron-Hydrogen Molecule Scattering. Physical Review Letters, 2016, 116, 233201.	7.8	47
58	Valence-shell double photoionization of alkaline-earth-metal atoms. Physical Review A, 2007, 75, .	2.5	46
59	Solution of the proton-hydrogen scattering problem using a quantum-mechanical two-center convergent close-coupling method. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 115203.	1.5	46
60	Electron-impact excitation of molecular hydrogen. Physical Review A, 2017, 95, .	2.5	46
61	Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering. Physical Review A, 2018, 97, .	2.5	45
62	The convergent close-coupling method for a Coulomb three-body problem. Computer Physics Communications, 1995, 85, 1-17.	7.5	43
63	Photodouble ionization of helium at an excess energy of 40 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 265-283.	1.5	43
64	Ejection of Quasi-Free-Electron Pairs from the Helium-Atom Ground State by Single-Photon Absorption. Physical Review Letters, 2013, 111, 013003.	7.8	43
65	Time-independent and time-dependent close-coupling methods for the electron-impact ionization of , and. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 911-924.	1.5	42
66	Convergent-close-coupling formalism for positron scattering from molecules. Physical Review A, 2013, 87, .	2.5	42
67	Electron scattering from the molecular hydrogen ion and its isotopologues. Physical Review A, 2014, 90, .	2.5	42
68	Convergent close-coupling calculations of low-energy positron–atomic-hydrogen scattering. Physical Review A, 1993, 48, 4787-4789.	2.5	41
69	Higher-order contributions observed in three-dimensional <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo><mml:mo><mml:mrow><mml:mn>2<measurements 1-kev="" 2008,="" 77.<="" a,="" at="" energy,="" impact="" physical="" review="" td=""><td>/mml:mn></td><td><mml:mi>e<</mml:mi></td></measurements></mml:mn></mml:mrow></mml:mo></mml:mo></mml:mrow></mml:math>	/mml:mn>	<mml:mi>e<</mml:mi>
70	Non-LTE analysis of K I in late-type stars. Astronomy and Astrophysics, 2019, 627, A177.	5.1	41
71	Stark broadening of the B III2sâ^'2plines. Physical Review E, 1997, 56, 7186-7192.	2.1	40
72	Wave-packet continuum-discretization approach to ion-atom collisions: Nonrearrangement scattering. Physical Review A, 2016, 94, .	2.5	40

#	Article	IF	CITATIONS
73	Absolute double differential cross sections for electron-impact ionization of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 1309-1322.	1.5	39
74	Calculation of electron scattering from the ground state of barium. Physical Review A, 1999, 59, 282-294.	2.5	39
75	Low-energy positron interactions with krypton. Physical Review A, 2011, 83, .	2.5	39
76	Positron scattering from argon: total cross sections and the scattering length. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 015203.	1.5	39
77	Spin-dependent observables in electron-sodium scattering calculated using the coupled-channel optical method. Physical Review A, 1993, 47, 317-326.	2.5	38
78	Equal energy-sharing double photoionization of helium from near-threshold to high energies. Physical Review A, 2000, 62, .	2.5	38
79	Iteratively-coupled propagating exterior complex scaling method for electron–hydrogen collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, L69-L76.	1.5	38
80	Kerr black hole as a gravitational lens. Physical Review D, 1986, 34, 367-372.	4.7	37
81	Experimental determination of the scattering length for positron scattering from krypton. European Physical Journal D, 2011, 64, 317-321.	1.3	37
82	Cross sections for electron scattering from the ground state of mercury. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 4255-4271.	1.5	36
83	Asymptotic behavior of the Coulomb three-body scattered wave. Physical Review A, 2003, 68, .	2.5	36
84	Low-energy positron–helium convergent close coupling calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, L1-L6.	1.5	36
85	Convergent calculations of double ionization of helium: From(γ,2e)to(e,3e)processes. Physical Review A, 2004, 69, . Tracing multiple scattering patterns in absolute <mml:math< td=""><td>2.5</td><td>36</td></mml:math<>	2.5	36
86	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>e</mml:mi>e,<mml:mn>2</mml:mn><mml:mi>e<td>ml:mi><m< td=""><td>ıml;mo) Tj E1</td></m<></td></mml:mi></mml:mrow>	ml:mi> <m< td=""><td>ıml;mo) Tj E1</td></m<>	ıml;mo) Tj E1
87	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow> <td>>2.5</td> <td>36</td>	>2.5	36
88	$m \to (1,^1 m S), 2,^3 m S), 2,^1 m S), 2,^3 m P) o , n, ^{1,3} L)$: Thermally averaged electron collision strengths for $n leq 5$. Astronomy and Astrophysics, 2000, 146, 481-498.$	2.1	36
89	Electron-impact excitation and ionization of. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L435-L440.	1.5	35
90	High-resolution positron scattering from helium: Grand total and positronium-formation cross sections. Physical Review A, 2009, 80, .	2.5	35

#	Article	IF	Citations
91	Convergent close-coupling method for positron scattering from noble gases. New Journal of Physics, 2012, 14, 035002.	2.9	35
92	Calculation of the total and total ionization cross sections for positron scattering on atomic hydrogen. Physical Review A, 1994, 49, R2224-R2226.	2.5	34
93	Electron-impact-excitation cross sections of hydrogenlike ions. Physical Review A, 1997, 55, 329-334.	2.5	34
94	On the convergence of close-coupling results for low-energy electron scattering from magnesium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 2617-2639.	1.5	34
95	Coulomb Breakup Problem. Physical Review Letters, 2008, 101, 230405.	7.8	34
96	Convergent close-coupling approach to light and heavy projectile scattering on atomic and molecular hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 202001.	1.5	34
97	Benchmark Nonperturbative Calculations for the Electron-Impact Ionization ofLi(2s)andLi(2p). Physical Review Letters, 2001, 87, 213201.	7.8	33
98	Measurements of the ionization of atomic hydrogen by 17.6-eV electrons. Physical Review A, 2003, 67, .	2.5	33
99	Near-Threshold Positron-Impact Ionization of Atomic Hydrogen. Physical Review Letters, 2007, 98, 263202.	7.8	33
100	Multiconfigurational two-centre convergent close-coupling approach to positron scattering on helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 125203.	1.5	33
101	Polarization of Lyman- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>$\hat{l}\pm<$/mml:mi></mml:mi></mml:math> emission in proton-hydrogen collisions studied using a semiclassical two-center convergent close-coupling approach. Physical Review A, 2016, 93, .	2.5	33
102	Convergent calculations for simultaneous electron-impact ionization-excitation of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L433-L438.	1.5	32
103	Symmetrized amplitudes of the helium-atom double photoionization. Physical Review A, 2002, 65, .	2.5	32
104	Triple differential cross sections for the electron-impact ionization of helium at 102 eV incident energy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 145002.	1.5	32
105	Electron-helium scattering in Debye plasmas. Physical Review A, 2011, 84, .	2.5	32
106	Coupled-channel optical calculation of electron-hydrogen scattering: Elastic scattering from 0.5 to 30 eV. Physical Review A, 1991, 43, 5878-5885.	2.5	31
107	Low-energy electron-impact ionization of helium. Physical Review A, 1998, 57, R3161-R3164.	2.5	31
108	Box-based convergent close-coupling method for solving Coulomb few-body problems. Physical Review A, 2003, 67, .	2.5	31

#	Article	IF	CITATIONS
109	Relativistic convergent close-coupling method applied to electron scattering from mercury. Physical Review A, 2010, 82, .	2.5	31
110	Coupled channels in the distorted-wave representation. Physical Review A, 1989, 39, 4998-5009.	2.5	30
111	Fully differential cross-section measurements for electron-impact ionization of neon and xenon. Physical Review A, 2009, 79, .	2.5	30
112	Time-dependent model calculations for a molecular hydrogen ion in a strong ultra-short laser pulse. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 3325-3336.	1.5	29
113	Convergent close-coupling calculation of electron-sodium scattering. Physical Review A, 1994, 49, R1-R4.	2.5	28
114	Benchmark calculations for e - H scattering between then= 2 andn= 3 thresholds. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 5493-5503.	1.5	28
115	Double-photoionization calculations of the helium metastable 21,3S states. Physical Review A, 2000, 62, .	2.5	28
116	Absolute cross sections for the ionization-excitation of helium by electron impact. Physical Review A, 2008, 78, .	2.5	28
117	Electron-impact excitation of the <mml:math inline"="" xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math
display="><mml:mrow><mml:mrow><mml:ms <mml:mo=""><mml:mrow><mml:mn>5</mml:mn><mml:ms></mml:ms><mml:mn>2</mml:mn>(/jmml:mn>/</mml:mrow><mml:mn>1</mml:mn>///</mml:ms></mml:mrow><mml:mn>1</mml:mn>///</mml:mrow></mml:math>	2.5	28
118	Physical Review A, 2006, 77, . Title is missing!. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 895-913.	1.5	27
119	Electron-impact broadening of the 3s–3p lines in low-Z Li-like ions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 81, 371-384.	2.3	27
120	Theory of electron-impact ionization of atoms. Physical Review A, 2004, 70, .	2.5	27
121	Partial Photoionization Cross Sections and Angular Distributions for Double Excitation of Helium up to the N=13Threshold. Physical Review Letters, 2005, 95, 243003.	7.8	27
122	Electron impact ionization of ground-state and metastable Li+ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 025203.	1.5	27
123	Two-center convergent close-coupling calculations for positron-lithium collisions. Physical Review A, 2010, 82, .	2.5	27
124	Adiabatic-nuclei calculations of positron scattering from molecular hydrogen. Physical Review A, 2017, 95, .	2.5	27
125	Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons. Physical Review A, 2017, 96, .	2.5	27
126	Calculation of singly differential cross sections of electron-impact ionization of helium at 100 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L435-L441.	1.5	26

#	Article	IF	CITATIONS
127	Calculation of electron scattering from the metastable states of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L197-L202.	1.5	26
128	Superelastic electron scattering on lithium. Physical Review A, 1996, 54, R9-R12.	2.5	26
129	Convergence of two-centre expansions in positron-hydrogen collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L635-L640.	1.5	26
130	Comparative theoretical study of (e, 3e) on helium: Coulomb-waves versus close-coupling approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, L15-L21.	1.5	26
131	Relativistic convergent close-coupling method: Calculations of electron scattering from cesium. Physical Review A, 2009, 80, .	2.5	26
132	Coupled-channel integral-equation approach to antiproton–hydrogen collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 075204.	1.5	26
133	Low-energy positron interactions with xenon. New Journal of Physics, 2011, 13, 125004.	2.9	26
134	Target Structure-Induced Suppression of the Ionization Cross Section for Low-Energy Antiproton-Molecular Hydrogen Collisions: Theoretical Confirmation. Physical Review Letters, 2013, 111, 173201.	7.8	26
135	Low-energy electron-impact ionization of helium. Physical Review A, 2005, 72, .	2.5	25
136	Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium. Physical Review A, 2006, 74, .	2.5	25
137	(e, 2e) triple differential cross-sections for ionization beyond helium: the neon case at large energy transfer. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 085205.	1.5	25
138	Theoretical study of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mo>+</mml:mo>Li<mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:mrow><td>2.9</td><td>25</td></mml:math>	2.9	25
139	capture process in a three-body model. Physical Review C, 2016, 94, . Quantum suppression of antihydrogen formation in positronium-antiproton scattering. Nature Communications, 2017, 8, 1544.	12.8	25
140	Convergent close-coupling method for electron scattering on helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, L421-L425.	1.5	24
141	Absolute triple differential cross section for electron-impact ionization of helium at 50 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L67-L73.	1.5	24
142	Convergent close-coupling calculations of electron - beryllium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L273-L277.	1.5	24
143	Superelastic electron - lithium scattering at 7 and 14 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L187-L191.	1.5	24
144	Spin Asymmetries in Low-Energy Electron Scattering from Cesium Atoms. Physical Review Letters, 1999, 82, 1128-1131.	7.8	24

#	Article	IF	CITATIONS
145	Two-center close-coupling calculations of positron–molecular-hydrogen scattering. Physical Review A, 2015, 92, .	2.5	24
146	Electron-impact dissociation of molecular hydrogen into neutral fragments. European Physical Journal D, 2018, 72, 1.	1.3	24
147	Proton scattering from excited states of atomic hydrogen. Plasma Physics and Controlled Fusion, 2018, 60, 095009.	2.1	24
148	Wave-packet continuum-discretization approach to proton collisions with helium. Physical Review A, 2019, 99,	2.5	24
149	Fully vibrationally-resolved electronic excitation of H <mml:math altimg="si24.svg" display="inline" id="d1e3985" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow< td=""><td></td><td></td></mml:mrow<></mml:msub></mml:mrow></mml:math>		

#	Article	IF	CITATIONS
163	Antiproton stopping in atomic targets. Physical Review A, 2015, 92, .	2.5	22
164	Roadmap on photonic, electronic and atomic collision physics: II. Electron and antimatter interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171002.	1.5	22
165	Benchmark calculations of electron impact electronic excitation of the hydrogen molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 145204.	1.5	22
166	Convergent close-coupling calculation of singly differential cross sections in the ionization of atomic hydrogen by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, L413-L419.	1.5	21
167	Spin dependence of (e, 2e) collisions on lithium at 54.4 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 4401-4411.	1.5	21
168	A mixture model for rounded data. Journal of the Royal Statistical Society: Series D (the Statistician), 2003, 52, 3-13.	0.2	21
169	Electron-impact ionization of the helium metastable 23S state. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 1663-1671.	1.5	21
170	Double photoionization of He andH2at unequal energy sharing. Physical Review A, 2005, 72, .	2.5	21
171	Database for inelastic collisions of sodium atoms with electrons, protons, and multiply charged ions. Atomic Data and Nuclear Data Tables, 2008, 94, 981-1014.	2.4	21
172	A two-centre convergent close-coupling approach to positron–helium collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 031001.	1.5	21
173	Two-center convergent-close-coupling calculations of positron scattering on magnesium. Physical Review A, 2012, 86, .	2.5	21
174	Fully differential cross section for single ionization in energetic C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msup></mml:math> -He collisions, Physical Review A, 2012, 86, .	2.5	21
175	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>α</mml:mi><mml:mo>+<mml:mo>+</mml:mo>+</mml:mo>++γ/i³<td></td><td>i>d</td></mml:mrow>		i>d
176	Physical Review C, 2018, 98, Coupled-channel optical calculation of electron-hydrogen scattering: The distorted-wave optical potential. Physical Review A, 1990, 41, 5916-5928.	2.5	20
177	Calculation of electron-lithium scattering using the coupled-channel optical method. Physical Review A, 1993, 47, 1101-1110.	2.5	20
178	Simplified Model of Electron Scattering on Atomic Hydrogen. Atomic Data and Nuclear Data Tables, 1994, 58, 67-75.	2.4	20
179	Superelastic electron scattering from potassium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L867-L872.	1.5	20
180	Polarization of Lyman- \hat{l}_{\pm} radiation from atomic hydrogen excited by electron impact from near threshold to 1800 eV. Physical Review A, 1998, 57, 1787-1797.	2.5	20

#	Article	IF	Citations
181	Excitation of the 31P state of magnesium by electron impact from the ground state. Physical Review A, 2001, 63, .	2.5	20
182	Electron-impact ionization of atomic hydrogen at incident electron energies of 15.6, 17.6, 25, and 40 eV. Physical Review A, 2003, 68, .	2.5	20
183	On convergence of the close-coupling method for calculating electron–hydrogen ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2203-2209.	1.5	20
184	Influence of long-lived metastable levels on the electron-impact single ionization of C2+. Physical Review A, 2005, 71, .	2.5	20
185	Spin effects in double photoionization of lithium. Physical Review A, 2010, 81, .	2.5	20
186	Near-threshold behavior of positronium-antiproton scattering. Physical Review A, 2016, 94, .	2.5	20
187	lonization and electron capture in collisions of bare carbon ions with hydrogen. Physical Review A, 2018, 98, .	2.5	20
188	Electron capture, excitation and ionization in He ²⁺ â€"H and H ⁺ â€"He ⁺ collisions. Plasma Physics and Controlled Fusion, 2019, 61, 095005.	2.1	20
189	Theoretical triple differential cross section of the helium atom ionization with excitation to then=2 ion state. Physical Review A, 1994, 50, 4700-4706.	2.5	19
190	Calculation of electron-helium scattering at 40 eV. Physical Review A, 1995, 51, 500-503.	2.5	19
191	Electron impact excitation of the 3D states of helium: comparison between experiment and theory at 30 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 3459-3473.	1.5	19
192	Near-threshold electron impact ionization of atomic hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L309-L315.	1.5	19
193	Experimental and theoretical study of linear and circular dichroism in helium double photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L501-L509.	1.5	19
194	Polarization study of the extreme-ultraviolet emission from helium following electron impact. Physical Review A, 1999, 60, 1187-1198.	2.5	19
195	A procedure to extract the complex amplitudes of He photodouble ionization from experimental data. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, L241-L247.	1.5	19
196	Benchmark experiment and theory for near-threshold excitation of helium by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4179-4190.	1.5	19
197	Close-coupling approach to antiproton-impact breakup of molecular hydrogen. Physical Review A, 2014, 89, .	2.5	19
198	Internal consistency in positron-hydrogen-scattering calculations. Physical Review A, 2015, 91, .	2.5	19

#	ARTICLE:rgy electron scattering from molecular hydrogen: Excitation of the <mml:math block"="" xmins:mmi="http://www.w3.org/1998/iviath/iv</th><th>IF</th><th>CITATIONS</th></tr><tr><td>199</td><td><math display=">\label{limit} width="0.16em"/><mml:msup><mml:mrow <="" math=""><td>2.5 ml:msup></td><td>19 </td></mml:mrow></mml:msup></mml:math>	2.5 ml:msup>	19
200	Cosmic rays in molecular clouds probed by H ₂ rovibrational lines. Astronomy and Astrophysics, 2022, 658, A189.	5.1	19
201	Calculation of spin-dependent observables in electron-sodium scattering using the coupled-channel optical method. Physical Review Letters, 1992, 69, 1908-1910.	7.8	18
202	Shape and dynamics of the 33D state of helium excited by 40 eV electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, L795-L801.	1.5	18
203	Convergent close-coupling calculations of helium single ionization by antiproton impact. Physical Review A, 2011, 84, .	2.5	18
204	Inelastic e+Mg collision data and its impact on modelling stellar and supernova spectra. Astronomy and Astrophysics, 2017, 606, A11.	5.1	18
205	Low-energy electron-impact dissociative excitation of molecular hydrogen and its isotopologues. Physical Review A, 2017, 96, .	2.5	18
206	Convergence of anL2approach in the coupled-channel optical-potential method fore-H scattering. Physical Review A, 1991, 43, 1301-1305.	2.5	17
207	Coupled-channel optical calculation of electron-atom scattering: Elastic scattering from sodium at 20 to 150 eV. Physical Review A, 1991, 44, 7830-7833.	2.5	17
208	Theoretical cross sections, angular-correlation parameters and polarization fractions for electron-hydrogen scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4619-4638.	1.5	17
209	Differential cross sections for electron-impact excitation out of the metastable levels of the barium atom. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5123-5146.	1.5	17
210	Photo double ionization of helium 100 eV and 450 eV above threshold: I. Linearly polarized light. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 615-633.	1.5	17
211	On-shell coupled-channel approach to proton-hydrogen collisions without partial-wave expansion. Physical Review A, 2006, 73, .	2.5	17
212	Convergent close-coupling calculations of positron-magnesium scattering. Physical Review A, 2011, 83,	2.5	17
213	Timing analysis of two-electron photoemission. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 101003.	1.5	17
214	Propensity for distinguishing two free electrons with equal energies in electron-impact ionization of helium. Physical Review A, 2015, 92, .	2.5	17
215	Fully differential cross sections for single ionization of helium by energetic protons. Physical Review A, 2019, 100, .	2.5	17
216	Differential study of proton-helium collisions at intermediate energies: Elastic scattering, excitation, and electron capture. Physical Review A, 2021, 104, .	2.5	17

#	Article	IF	CITATIONS
217	State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions. Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy, 2019, , .	0.5	17
218	Integral cross sections for electron scattering by ground-state Ba atoms. Physical Review A, 1999, 60, 4590-4599.	2.5	16
219	Scattering theory for arbitrary potentials. Physical Review A, 2005, 72, .	2.5	16
220	Excitations ofP1levels of zinc by electron impact on the ground state. Physical Review A, 2005, 72, .	2.5	16
221	Direct solution of the three-dimensional Lippmann–Schwinger equation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 509-515.	1.5	16
222	Two-electron photoionization of ground-state lithium. Physical Review A, 2009, 80, .	2.5	16
223	Benchmark cross sections for electron-impact total single ionization of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 061001.	1.5	16
224	Relativistic convergent close-coupling method calculation of the spin polarization of electrons scattered elastically from zinc and mercury. Physical Review A, 2012, 85, .	2.5	16
225	Two-center convergent-close-coupling calculations for positron-sodium collisions. Physical Review A, 2012, 85, .	2.5	16
226	Calculations of electron scattering from H <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub>+</mml:mrow></mml:msup></mml:math> .	2.5	16
227	Physical Review A 2013 88 xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Double</mml:mi> <mml:mo>â^'</mml:mo> <mm' electron-impact="" in="" ionization="" metastable="" of="" single="" two-electron<mml:math="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:msup><mml:mi< td=""><td></td><td>ıml:mi><mml< td=""></mml<></td></mml:mi<></mml:msup></mml:mrow></mm'>		ıml:mi> <mml< td=""></mml<>

#	Article	IF	CITATIONS
235	Electron scattering from optically pumped lithium atoms. Physical Review A, 1999, 59, 4407-4417.	2.5	15
236	Reply to "Possibility of distinguishing between identical particles in quantum collision processes― Physical Review A, 1999, 59, 3133-3135.	2.5	15
237	Electron-impact excitation of the 12S→22S+22Plevels of atomic hydrogen at 30, 40, 50, 54.4, and 100 eV. Physical Review A, 1999, 61, .	2.5	15
238	Measuring cesium electron impact cross-sections using a magneto-optical trap. Journal of Electron Spectroscopy and Related Phenomena, 2002, 123, 173-184.	1.7	15
239	Unambiguous ionization amplitudes for electron-hydrogen scattering. Physical Review A, 2003, 68, .	2.5	15
240	Threshold ionization laws for electron-hydrogen scattering and their dominant region of configuration space. Physical Review A, 2003, 68, .	2.5	15
241	Photo double ionization of helium 100 eV and 450 eV above threshold: III. Gerade and ungerade amplitudes and their relative phases. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 645-657.	1.5	15
242	Emission cross sections for electron-impact excitation of zinc atoms. Physical Review A, 2009, 79, .	2.5	15
243	Differential ionization in antiproton–hydrogen collisions within the convergent-close-coupling approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 165203.	1.5	15
244	Signature of Two-Electron Interference in Angular Resolved Double Photoionization of Mg. Physical Review Letters, 2013, 110, 083001.	7.8	15
245	Calculations for electron-impact excitation and ionization of beryllium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 235701.	1.5	15
246	Time-of-flight electron scattering from molecular hydrogen: Benchmark cross sections for excitation of the $X1\hat{1}g+\hat{a}\dagger'b3\hat{1}u+$ transition. Physical Review A, 2018, 97, .	2.5	15
247	One-center close-coupling approach to two-center rearrangement collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 145201.	1.5	15
248	Convergent close-coupling calculations of electrons scattering on electronically excited molecular hydrogen. Physical Review A, 2021, 103, .	2.5	15
249	2 excitation of helium by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L421-L424.	1.5	14
250	Electron relaxation and excitation processes in metals. Journal Physics D: Applied Physics, 1998, 31, L78-L84.	2.8	14
251	Close-coupling approach to electron-impact ionization of helium. Physical Review A, 2001, 63, .	2.5	14
252	Superelastic electron scattering from laser excited rubidium at 20 eV incident energy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 1113-1124.	1.5	14

#	Article	IF	Citations
253	Electron scattering from magnesium at an incident energy of 20 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 4123-4134.	1.5	14
254	Fully differential cross sections for electron-impact ionization of sodium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 215203.	1.5	14
255	Three-dimensional integral-equation approach to proton- and antiproton-hydrogen collisions. Physical Review A, 2009, 80, .	2.5	14
256	Calculation of electron scattering from the ground state of ytterbium. Physical Review A, 2011, 83, .	2.5	14
257	Antiproton stopping in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2<mml:mrow><mml:msub><mml:mtext>H</mml:mtext><n 2015,="" 92<="" a.="" physical="" review="" td=""><td>ml:mn>< nml:mn>2</td><td>/mml:msub> !</td></n></mml:msub></mml:mrow></mml:mn></mml:msub></mml:math>	ml:mn>< nml:mn>2	/mml:msub> !
258	Attosecond Time Delay in Photoemission and Electron Scattering near Threshold. Physical Review Letters, 2016, 117, 143202.	7.8	14
259	Near-Threshold Cross Sections for Electron and Positron Impact Ionization of Atomic Hydrogen. Physical Review Letters, 2018, 121, 203401.	7.8	14
260	Balmer emission induced by proton impact on atomic hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 105701.	1.5	14
261	Angular and polarization correlation measurements for the 32P states of atomic hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 4599-4605.	1.5	13
262	S-wave model for e-He+scattering. Physical Review A, 1997, 55, 3236-3238.	2.5	13
263	Electron-impact-excitation cross sections of lithiumlike ions. Physical Review A, 1997, 56, 3726-3733.	2.5	13
264	Comparison of Electron-Atom Collision Parameters for StoPTransitions under Reversal of Energy Transfer. Physical Review Letters, 1998, 81, 4604-4607.	7.8	13
265	Cross sections and collision dynamics of the excitation of(1snp)1Polevels of helium,n=2–5,by intermediate- and high-velocity electron, proton, and molecular-ion(H2+andH3+)impact. Physical Review A, 2001, 64, .	2.5	13
266	Electron-helium scattering within theS-wave model. Physical Review A, 2002, 65, .	2.5	13
267	Absolute triple-differential cross sections for ionization-excitation of helium. Physical Review A, 2007, 76, .	2.5	13
268	K-shell double photoionization of Be, Mg, and Ca. Physical Review A, 2009, 79, .	2.5	13
269	Antiproton-impact ionization of Ne, Ar, Kr, Xe, andH2O. Physical Review A, 2015, 91, .	2.5	13
270	Kinetic-energy release of fragments from electron-impact dissociation of the molecular hydrogen ion and its isotopologues. Physical Review A, 2017, 96, .	2.5	13

#	Article	IF	CITATIONS
271	State-resolved Photodissociation and Radiative Association Data for the Molecular Hydrogen Ion. Astrophysical Journal, 2017, 851, 64.	4.5	13
272	Electron-impact dissociative excitation cross sections for singlet states of molecular hydrogen. Physical Review A, 2018, 98, .	2.5	13
273	Vibrationally resolved electron-impact excitation cross sections for singlet states of molecular hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 144007.	1.5	13
274	All-Order Full-Coulomb Quantum Spectral Line-Shape Calculations. Physical Review Letters, 2021, 127, 235001.	7.8	13
275	Calculation of electron-potassium scattering. Physical Review A, 1993, 47, 3951-3960.	2.5	12
276	S-wave model for H-like ions. Physical Review A, 1997, 56, R1694-R1696.	2.5	12
277	EXCITATION AND IONIZATION CROSS SECTIONS FOR HE I FROM NORMALIZED BORN AND K-MATRIX CALCULATIONS: \hat{l} 'S = 0 TRANSITIONS FROM n = 2, 3 EXCITED STATES. Atomic Data and Nuclear Data Tables, 2000, 74, 123-153.	2.4	12
278	Electron scattering from laser excited states of potassium at 3-100 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 1105-1114.	1.5	12
279	Angular correlation in the two-electron continuum. Physical Review A, 2006, 73, .	2.5	12
280	Convergent close-coupling calculations of positron scattering on metastable helium. Physical Review A, 2010, 82, .	2.5	12
281	Relativistic and Close-Coupling Effects in the Spin Polarization of Low-Energy Electrons Scattered Elastically from Cadmium. Physical Review Letters, 2011, 107, 093202.	7.8	12
282	Relativistic convergent close-coupling calculation of spin asymmetries for electron–indium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 181001.	1.5	12
283	Calculations of electron scattering from cadmium. Physical Review A, 2012, 85, .	2.5	12
284	Benchmark calculation of hydrogen (antihydrogen) formation at rest in positronium-proton (-antiproton) scattering. Physical Review A, 2013, 87, .	2.5	12
285	Two-center approach to fully differential positron-impact ionization of hydrogen. Physical Review A, 2014, 89, .	2.5	12
286	Heating due to momentum transfer in low-energy positronium-antiproton scattering. Physical Review A, 2016, 94, .	2.5	12
287	Vibrational excitation of the ${\{m\{H\}}_{2}X\{}^{1}_{m\{Sigma\}}_{g}^{+}\$ state via electron-impact excitation and radiative cascade. Plasma Sources Science and Technology, 2019, 28, 025004.	3.1	12
288	Integrated total and state-selective cross sections for bare beryllium ion collisions with atomic hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 175201.	1.5	12

#	Article	IF	Citations
289	Effective one-electron approach to proton collisions with molecular hydrogen. European Physical Journal D, 2022, 76, 1.	1.3	12
290	Polarization potential for dipole excitations. Physical Review A, 1988, 37, 49-54.	2.5	11
291	Electron-impact excitation of helium at 26.5 eV. Physical Review A, 1997, 56, 4606-4611.	2.5	11
292	Electron impact excitation of the 42P state in potassium at 54.4 eV: differential cross sections, alignment and orientation parameters. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 3003-3013.	1.5	11
293	Elastic electron scattering by laser-excited138Ba(6s6p1P1) atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 2801-2829.	1.5	11
294	Ionization kinetics of optically excited lithium vapour under conditions of negative electron mobility. Journal Physics D: Applied Physics, 2001, 34, 1379-1388.	2.8	11
295	Double shake-off model for the triple photoionization of beryllium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, L211-L217.	1.5	11
296	Differential cross sections for electron impact excitation of the⟨i⟩n⟨ i⟩ = 2 states of helium at intermediate energies (80, 100 and 120 eV) measured across the complete angular scattering range (0â€"180°). Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 045209.	1.5	11
297	Threshold behavior of positronium formation in positron–alkali-metal scattering. Physical Review A, 2013, 87, .	2.5	11
298	Calculation of the relativistic rise in electron-impact-excitation cross sections for highly charged ions. Physical Review A, 2013, 88, .	2.5	11
299	Calculation of the polarization of light emitted during electron-impact excitation ofBa+. Physical Review A, 2014, 89, .	2.5	11
300	Ionization amplitudes in electron-hydrogen collisions. Physical Review A, 2014, 90, .	2.5	11
301	Solving close-coupling equations in momentum space without singularities. Computer Physics Communications, 2015, 196, 276-279.	7.5	11
302	Electron-scattering on molecular hydrogen: convergent close-coupling approach. European Physical Journal D, 2020, 74, 1.	1.3	11
303	Complete collision data set for electrons scattering on molecular hydrogen and its isotopologues: II. Fully vibrationally-resolved electronic excitation of the isotopologues of H2 (X1Σg+). Atomic Data and Nuclear Data Tables, 2021, 139, 101403.	2.4	11
304	Comparison of convergent electron - hydrogen calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L245-L247.	1.5	10
305	Atomic collision parameters for electron de-excitation of the 4S-3P transition of sodium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 2439-2459.	1.5	10
306	Excitation and polarization of the 33D state of helium by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 2265-2278.	1.5	10

#	Article	IF	CITATIONS
307	Polarization of Balmer-α radiation following electron impact on atomic hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 3367-3376.	1.5	10
308	Electron-impact ionization doubly differential cross sections of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2211-2227.	1.5	10
309	Electron-impact helium double excitation within the S-wave model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 3711-3721.	1.5	10
310	Nondipole effects in double photoionization of He at 450 eV excess energy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, L35-L43.	1.5	10
311	Superelastic electron scattering from laser-excited cesium atoms. Physical Review A, 2007, 75, .	2.5	10
312	Creation, destruction, and transfer of atomic multipole moments by electron scattering: Quantum-mechanical treatment. Physical Review A, 2008, 78, .	2.5	10
313	Benchmark differential cross sections for electron impact excitation of the <i>n</i> = 2 states in helium at near-ionization- threshold energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 145202.	1.5	10
314	Electron-impact ionization of B $<$ sup $>3+sup>ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 175203.$	1.5	10
315	Electron excitation of the <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:msup><mml:mspace width="0.16em"></mml:mspace><mml:mn>1</mml:mn><mml:msub></mml:msub></mml:msup></mml:mrow></mml:math> state	2.5	10
316	Spectral Line Shapes of He I Line 3889 Ã Atoms, 2014, 2, 277-298.	1.6	10
317	Solving close-coupling equations in momentum space without singularities II. Computer Physics Communications, 2016, 203, 147-151.	7.5	10
318	Differential cross sections for excitation of H ₂ by low-energy electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 225203.	1.5	10
319	Proton-beam stopping in hydrogen. Physical Review A, 2019, 99, .	2.5	10
320	Singly differential cross sections for direct scattering, electron capture, and ionization in proton-hydrogen collisions. Physical Review A, 2020, 102, .	2.5	10
321	Effective single-electron treatment of ion collisions with multielectron targets without using the independent-event model. Physical Review A, 2021, 104, .	2.5	10
322	Local versus non-local core potentials in electron scattering from sodium atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, L271-L275.	1.5	9
323	Model calculations of electron scattering from copper. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 1033-1039.	1.5	9
324	Electron collisional broadening of 2s3s–2s3p lines in Be-like ions. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 71, 595-607.	2.3	9

#	Article	lF	CITATIONS
325	Electron-impact excitation of excited atomic barium. Physical Review A, 2002, 65, .	2.5	9
326	Experimental observation of initial-state effects in photo-double-ionization of Ne2s. Physical Review A, 2004, 70, .	2.5	9
327	Angle-differential cross sections and spin-asymmetry parameters for spin-polarized electron-impact excitation of spin-polarized cesium atoms. Physical Review A, 2004, 70, .	2.5	9
328	H(2p) excitation by 54.4 eV electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, L95-L98.	1.5	9
329	Parametrizations and dynamical analysis of angle-integrated cross sections for double photoionization including nondipole effects. Physical Review A, 2005, 72, .	2.5	9
330	Almost sudden perturbation of a quantum system with ultrashort electric pulses. Physical Review A, 2008, 77, .	2.5	9
331	Interference effects in L-shell atomic double photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 011002.	1.5	9
332	Calculation of the polarization fraction and electron-impact excitation cross section for the Cd+(5p)2P3/2state. Physical Review A, 2014, 90, .	2.5	9
333	Indirect contributions to electron-impact ionization of Li+ (1s2sS13) ions: Role of intermediate double- K-vacancy states. Physical Review A, 2018, 97, .	2.5	9
334	Laser-driven production of the antihydrogen molecular ion. Physical Review A, 2019, 100, .	2.5	9
335	Recommended electron-impact excitation and ionization cross sections for Be I. Atomic Data and Nuclear Data Tables, 2019, 127-128, 1-21.	2.4	9
336	Calculation of electron scattering on excited states of sodium. Physical Review A, 1994, 49, 2667-2674.	2.5	8
337	Calculation of electron-impact excitation and ionization of atoms and ions. Canadian Journal of Physics, 1996, 74, 875-882.	1.1	8
338	Convergent close-coupling calculation of electron-barium scattering. Physical Review A, 1998, 57, R3150-R3153.	2.5	8
339	Absolute Differential Cross Sections for the Electron Impact Excitation of the 12Sâ†'22S+22PLevels of Atomic Hydrogen at 50 and 100 eV. Physical Review Letters, 1999, 82, 3980-3983.	7.8	8
340	Nondipole transitions in atom excitation by ultrashort laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 3427-3434.	1.5	8
341	(e, $e\hat{l}^3$)-coincidence studies to determine spin-resolved Stokes parameters of the 185 nm emission line in mercury. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 2403-2410.	1.5	8
342	Differential and integrated cross sections for excitation to the3s,3p, and3dstates of atomic hydrogen by electron impact below then=4threshold. Physical Review A, 2006, 74, .	2.5	8

#	Article	IF	CITATIONS
343	Angular anisotropy parameters and recoil-ion momentum distribution in two-photon double ionization of helium. Physical Review A, 2007, 76, .	2.5	8
344	Different escape modes in two-photon double ionization of helium. Physical Review A, 2007, 75, .	2.5	8
345	Quantum-statistical T-matrix approach to line broadening of hydrogen in dense plasmas. AIP Conference Proceedings, 2010, , .	0.4	8
346	Differential cross sections of double photoionization of lithium. Physical Review A, 2010, 82, .	2.5	8
347	Calculation of electron-impact ionization using theJ-matrix method. Physical Review A, 2010, 82, .	2.5	8
348	Nonperturbative electron-ion-scattering theory incorporating the M <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\tilde{A}_s</mml:mi></mml:math> ller interaction. Physical Review A, 2012, 86, .	2.5	8
349	Comment I on "Topological angular momentum in electron exchange excitation of a single atomâ€. Physical Review A, 2013, 87, .	2.5	8
350	Electron mass stopping power in H2. Physical Review A, 2017, 96, .	2. 5	8
351	Calculation of electron scattering on atomic silver. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 085203.	1.5	8
352	Efficient calculation of Rayleigh and Raman scattering. Physical Review A, 2018, 98, .	2.5	8
353	Isotopic and vibrational-level dependence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> dissociation by electron impact. Physical Review A, 2021, 103, .	2.5	8
354	Elastic electron scattering by laser-excited atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L393-L400.	1.5	7
355	Orientation dependence of inelastic scattering from the laser-excited(…6s6p1P1)state of barium. Physical Review A, 2002, 66, .	2.5	7
356	Photo double ionization of helium 100 eV and 450 eV above threshold: II. Circularly polarized light. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 635-643.	1.5	7
357	Differential cross sections for excitation to the 3s, 3p and 3d states of atomic hydrogen by electron impact at energies from 16.5 to 54 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 719-728.	1.5	7
358	Total polarization of the 185 nm emission line of mercury excited by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4435-4442.	1.5	7
359	Relativistic convergent close-coupling calculation of inelastic scattering of electrons from cesium. Physical Review A, 2014, 89, .	2.5	7
360	Structure of sup > 23 / sup > Al from a multi-channel algebraic scattering model based on mirror symmetry. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 095104.	3.6	7

#	Article	IF	CITATIONS
361	Importance of resonance widths in low-energy scattering of weakly bound light-mass nuclei. Physical Review C, 2016, 94, .	2.9	7
362	Antiproton stopping power data for radiation therapy simulations. Physica Medica, 2016, 32, 1827-1832.	0.7	7
363	Solving close-coupling equations in momentum space without singularities for charged targets. Computer Physics Communications, 2017, 212, 55-58.	7.5	7
364	Two-center convergent close-coupling approach to positron–helium-ion collisions. Physical Review A, 2018, 97, .	2.5	7
365	Positron-impact electronic excitations and mass stopping power of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review A, 2019. 99	2.5	7
366	State-selective electron capture in collisions of fully stripped neon ions with ground-state hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 115201.	1.5	7
367	Spheroidal gravitational lenses. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	6
368	Absolute triply differential (e,2e) cross sections for He in the intermediate energy region with comparison to theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L525-L531.	1.5	6
369	Cross sections for excitation of pseudostates. Physical Review A, 1999, 60, 5118-5121.	2.5	6
370	Electron-electron scattering rate in thin metal films. Physical Review B, 2001, 65, .	3.2	6
371	Sudden perturbation of hydrogen atoms by intense ultrashort laser pulses. Physical Review A, 2005, 72, .	2.5	6
372	Single ionization of helium by730â^'eVelectrons. Physical Review A, 2007, 75, .	2.5	6
373	Ionization of helium by 64.6 eV electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 074028.	1.5	6
374	A detailed study of electron impact ionization of Ne(2s) and Ar(3s). Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 125202.	1.5	6
375	Polarization of the Lyman- $\hat{l}\pm 1$ X-ray line emitted by hydrogen-like Ti21+, Ar17+, and Fe25+ ions excited by electron impact1This review is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas Canadian Journal of Physics, 2011, 89, 503-507.	1.1	6
376	J-matrix calculation of electron-heliumS-wave scattering. Physical Review A, 2011, 84, .	2.5	6
377	Photo-double-ionization of Mg studied by electron-electron-coincidence experiments. Physical Review A, 2014, 89, .	2.5	6
378	Plasma pressure broadening for few-electron emitters including strong electron collisions within a quantum-statistical theory. Physical Review E, 2014, 89, 023106.	2.1	6

#	Article	IF	CITATIONS
379	Calculation of electron-impact ionization of Mg and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Al</mml:mi><mml:mmultiscripts><mml:mrow><mml:mi< td=""><td>യുട <mml< td=""><td>:mo>+</td></mml<></td></mml:mi<></mml:mrow></mml:mmultiscripts></mml:mrow></mml:msup></mml:math>	യുട <mml< td=""><td>:mo>+</td></mml<>	:mo>+
380	mathvariant="normal">H <mml:mrow></mml:mrow> <mml:mprescripts></mml:mprescripts> <mml:none></mml:none> <mml:mn>2</mml:mn> <mml:mprescripts><mml:mrow><mml:minone></mml:minone><mml:mn>1 /><mml:minone></mml:minone><mml:minone></mml:minone><mml:minone></mml:minone><mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>3</mml:mn><mml:minone></mml:minone><mml:minone></mml:minone><mml:minone></mml:minone><mml:minone></mml:minone><mml:minone></mml:minone><mml:minone></mml:minone><mml:minone m<="" mml:minone="" td=""><td>2.9</td><td>6</td></mml:minone></mml:mrow></mml:mn></mml:mrow></mml:mprescripts>	2.9	6
381	mathv Spin asymmetry in electron-impact ionization. Physical Review A, 2019, 100, .	2.5	6
382	Electron-Impact Dissociation of Vibrationally-Excited Molecular Hydrogen into Neutral Fragments. Atoms, 2019, 7, 75.	1.6	6
383	Cross sections for electron scattering from atomic lead. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 015204.	1.5	6
384	Recommended Cross Sections for Electron–Indium Scattering. Journal of Physical and Chemical Reference Data, 2021, 50, .	4.2	6
385	Absolute triple differential cross sections for low-energy electron impact ionization of biochemically relevant systems: Water, tetrahydrofuran, and hydrated tetrahydrofuran. Physical Review A, 2021, 104, .	2.5	6
386	Internal consistency of the coupled-channels optical calculation for e-H scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 2083-2096.	1.5	5
387	Spin-resolved electron-impact ionization of lithium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 4309-4320.	1.5	5
388	Accuracy of close-coupling approaches using single-centre expansions for positron-lithium scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 1987-1996.	1.5	5
389	Convergent close-coupling calculations of the S-wave model of positron–hydrogen scattering. Nuclear Instruments & Methods in Physics Research B, 2000, 171, 119-125.	1.4	5
390	Comment on "Status of the convergent close-coupling method within the framework of the rigorous Coulomb scattering theory― Physical Review A, 2002, 66, .	2.5	5
391	Polarization of Lyman- \hat{l}^2 radiation from atomic hydrogen excited by electron impact from near-threshold energy to 1000 eV. Physical Review A, 2002, 66, .	2.5	5
392	Excitation Cross Sections for Li-like Ions of Beryllium and Boron. Physica Scripta, 2003, 67, 500-504.	2.5	5
393	The Photodouble Ionisation of Helium and Heavier Rare Gases. Physica Scripta, 2004, 110, 62.	2.5	5
394	Convergent close coupling calculations of two-photon double ionization of He. Journal of Physics: Conference Series, 2007, 88, 012051.	0.4	5
395	Benchmark Integral Cross Sections for Electron Impact Excitation of the <i>n</i> = 2 States in Helium. Plasma Science and Technology, 2010, 12, 348-352.	1.5	5
396	Differential cross sections for electron-impact excitation of laser-excited174Yb († 6s6p 3P1). Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 015202.	1.5	5

#	Article	IF	CITATIONS
397	Relativistic convergent close-coupling calculation of spin asymmetries for electron-thallium scattering. Physical Review A, 2012, 86, .	2.5	5
398	Calculation of the circular-polarizationP3Stokes parameter for electron-silver scattering. Physical Review A, 2013, 88, .	2.5	5
399	Convergent calculations of positron scattering from molecular hydrogen. Journal of Physics: Conference Series, 2015, 635, 012009.	0.4	5
400	Sudden perturbation approximations for interaction of atoms with intense ultrashort electromagnetic pulses. European Physical Journal D, 2015, 69, 1.	1.3	5
401	Calculations of positron scattering on the hydrogen molecular ion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 015203.	1.5	5
402	Electron-impact excitation of the ($5s25p$) $P1/22\hat{a}\dagger'(5s26s$) $S1/22$ transition in indium: Theory and experiment. Physical Review A, 2020, 102, .	2.5	5
403	Charge transfer in positronium–proton collisions: comparison of classical and quantum-mechanical theories. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 155201.	1.5	5
404	Electronic and Vibrational Close-Coupling Method for Resonant Electron-Molecule Scattering. Physical Review Letters, 2021, 127, 223401.	7.8	5
405	Collisions of antiprotons with excited positronium atoms. Physical Review A, 2021, 104, .	2.5	5
406	Full optical potential for the electron-hydrogen entrance channel. Physical Review A, 1989, 40, 2820-2823.	2.5	4
407	Calculations of spin asymmetries in electron-alkali scattering. Zeitschrift Fþr Physik D-Atoms Molecules and Clusters, 1994, 30, 99-103.	1.0	4
408	Impact Polarization and Alignment Creation Parameters Via Stepwise Excitation Processes. Physica Scripta, 1998, T78, 47.	2.5	4
409	Near-threshold correlation studies of the 21P and 33D states of helium excited by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 2571-2578.	1.5	4
410	<title>Spectropolarimetric measurements of the extreme-ultraviolet emission from helium following e-, H<formula><sup><roman>+</roman></formula>, H2<formula><sup><roman>+</roman></formula>, andH<formula><inf><roman></formula><inf></formula><formula><inf></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></formula></f</td><td></td><td>4</td></tr><tr><td>411</td><td>charged particle impact ⟨ title > . , 2001, , . Box-based and Laguerre-based convergent close-coupling calculations of electron–helium ionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 3425-3432.</td><td>1.5</td><td>4</td></tr><tr><td>412</td><td>Ionization of rubidium by50â^eVelectrons. Physical Review A, 2004, 69, .</td><td>2.5</td><td>4</td></tr><tr><td>413</td><td>Propagation effect in atom excitation by ultrashort and intense laser pulses. Physical Review A, 2004, 69, .</td><td>2.5</td><td>4</td></tr><tr><td>414</td><td>Calculation of electron-impact <math>4 < \sup > 1 < \sup > P </math> excitation of calcium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 145206.</td><td>1.5</td><td>4</td></tr></tbody></table></title>		

#	Article	IF	Citations
415	Pseudostate description of diatomic-molecule scattering from a hard-wall potential. Physical Review A, 2013, 87, .	2.5	4
416	Positron scattering on atoms and molecules. Journal of Physics: Conference Series, 2014, 488, 012052.	0.4	4
417	41P1Zn excitation by 80-eV electrons. Physical Review A, 2015, 91, .	2.5	4
418	Convergent close coupling versus the generalized Sturmian function approach: Wave-function analysis. Physical Review A, 2015, 92, .	2.5	4
419	Electron collisions with beryllium and its ions. Journal of Physics: Conference Series, 2015, 576, 012001.	0.4	4
420	Hybrid approach to calculating proton stopping power in hydrogen. Journal of Physics: Conference Series, 2017, 777, 012010.	0.4	4
421	Electron-impact coherence parameters for $4 < \sup 1 < \sup < i > P < i > > 1 < \le \le$	1.5	4
422	Configuration space method to calculate rearrangement matrix elements. Computer Physics Communications, 2019, 239, 64-71.	7.5	4
423	Rayleigh and Raman Scattering from Alkali Atoms. Atoms, 2020, 8, 57.	1.6	4
424	Time delay in two-electron photodetachment and tests of fundamental threshold laws. Physical Review Research, 2021, 3, .	3.6	4
425	Calculation of the single differential cross section for electron-impact ionization of atoms and molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 015205.	1.5	4
426	Calculation of cross sections measured in recoil-type experiments. Physical Review A, 1994, 50, 4400-4403.	2.5	3
427	Electron-impact excitation of the 3D state of hydrogen at 54.4 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, L493-L497.	1.5	3
428	Reply to "Line shape measurement and isolated line width calculations: Quantal versus semiclassical methods― Physical Review E, 1999, 60, 6241-6241.	2.1	3
429	Applications of collision theory. AIP Conference Proceedings, 2000, , .	0.4	3
430	Calculation of the free-free transitions in the electron-hydrogen scattering S-wave model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L71-L77.	1.5	3
431	Interaction of Rydberg atoms with two contrapropagating ultrashort laser pulses. Physical Review A, 2006, 73, .	2.5	3
432	Electron-impact ionization of helium with large energy transfer. Physical Review A, 2006, 74, .	2.5	3

#	Article	IF	Citations
433	Benchmark calculations for electron impact ionization and ionization-excitation of magnesium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 165205.	1.5	3
434	Polarization and anisotropic emission of K-shell radiation from heavy few electron ions ¹ This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas Canadian Journal of Physics, 2011, 89, 513-519.	1.1	3
435	Electron-impact coherence parameters for electron-impact excitation of laser-excited174Yb (…6s6p 3P1). Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 075201.	1.5	3
436	Positron scattering from noble gases. Journal of Physics: Conference Series, 2012, 388, 012020.	0.4	3
437	Low-energyl-mixing collisions of excited positronium with protons and antiprotons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 134001.	1.5	3
438	Antihydrogen formation in low-energy antiproton collisions with excited-state positronium atoms. Hyperfine Interactions, 2018 , 239 , 1 .	0.5	3
439	Convergent close-coupling approach to positron scattering on He+. European Physical Journal D, 2018, 72, 1.	1.3	3
440	Calculations of electron scattering on H-like ions. Physical Review A, 2020, 101, .	2.5	3
441	Box-Based Convergent Close-Coupling Calculations of Electron?Hydrogen Ionisation Cross Sections. Physica Scripta, 2004, 110, 200.	2.5	3
442	Atomic and Molecular Scattering Applications in an Apache Airavata Science Gateway. , 2020, , .		3
443	Taking the Convergent Close-Coupling Method beyond Helium: The Utility of the Hartree-Fock Theory. Atoms, 2022, 10, 22.	1.6	3
444	Calculation of Electron Scattering on Atoms and Ions. Australian Journal of Physics, 1996, 49, 201.	0.6	2
445	Calculation of electron-photon coincidence parameters for singlet-triplet mixed4Fstates of helium. Physical Review A, 1999, 59, 1297-1302.	2.5	2
446	Expansion approach to a three-body problem: Model positron–hydrogen scattering. Nuclear Physics A, 2001, 684, 669-671.	1.5	2
447	Experimental and theoretical study of electron impact excitation of the 33P state of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 2289-2300.	1.5	2
448	eâ^HscatteringS-wave model for initial excited states. Physical Review A, 2001, 64, .	2.5	2
449	Electron scattering from atomic gallium. Journal of Physics: Conference Series, 2009, 185, 012008.	0.4	2
450	Three-dimensional cross sections for electron impact ionization of atoms and molecules. Journal of Physics: Conference Series, 2010, 212, 012003.	0.4	2

#	Article	IF	CITATIONS
451	Convergence study of the close-coupling approach to positron-helium collisions. Journal of Physics: Conference Series, 2010, 199, 012021.	0.4	2
452	Close-coupling calculations of 64.6 eV e-He ionization. Journal of Physics: Conference Series, 2011, 288, 012002.	0.4	2
453	Convergent close-coupling approach to positron and antiproton collisions with atoms. Journal of Physics: Conference Series, 2011, 262, 012028.	0.4	2
454	Differential cross sections and electron impact coherence parameters for elastic electron scattering from laser-excited ¹³⁸ Ba. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 115202.	1.5	2
455	Quantum-statistical line shape calculation for Lyman- \hat{l}_{\pm} lines in dense H plasmas. Journal of Physics: Conference Series, 2012, 397, 012021.	0.4	2
456	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>J</mml:mi></mml:math>-matrix calculation of electron-helium<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math>-wave scattering. II. Single ionization and single excitation. Physical Review A, 2012, 86, .</pre>	2.5	2
457	Novel method for state selective determination of electron-impact-excitation cross sections from $0\hat{A}^{\circ}$ to $180\hat{A}^{\circ}$. EPJ Techniques and Instrumentation, 2014, 1, .	1.3	2
458	Electron scattering from molecular hydrogen in a spheroidal convergent close-coupling formalism. Journal of Physics: Conference Series, 2014, 488, 052016.	0.4	2
459	Calculations of electron-impact ionisation of ${\text{Fe}}^{25+}$ and ${\text{Fe}}^{25+}$ and ${\text{Fe}}^{24+}$. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 184001.	1.5	2
460	Comparison of experiment and theory for superelastic electron-collision studies from laser-aligned magnesium. Physical Review A, 2018, 98, .	2.5	2
461	Effect of cascade transitions on the polarization of light emitted after electron-impact excitation of Zn by spin-polarized electrons. Physical Review A, 2019, 100, .	2.5	2
462	Convergent close-coupling calculations of positron scattering on Hâ°. Physical Review A, 2019, 100, .	2.5	2
463	Extraction of Ps-formation cross-sections from single-centre positron-scattering calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 095201.	1.5	2
464	A Fully Relativistic Approach to Photon Scattering and Photoionization of Alkali Atoms. Atoms, 2021, 9, 42.	1.6	2
465	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>α</mml:mi> fluorescence in electron collisions with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> . Physical Review A.	2.5	2
466	Transport of electrons and propagation of the negative ionisation fronts in indium vapour. Plasma Sources Science and Technology, 0, , .	3.1	2
467	Anisotropic angular scattering models of elastic electron-neutral collisions for Monte Carlo plasma simulations. Plasma Sources Science and Technology, 2022, 31, 065013.	3.1	2
468	The effect of atomic polarizability in electron - hydrogen excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 3445-3458.	1.5	1

#	Article	lF	CITATIONS
469	Calculation of electron- and photon-impact ionization via a close-coupling approach. Computer Physics Communications, 1998, 114, 356-367.	7.5	1
470	lonization studies of channelled hydrogen-like F ions in a Si single crystal. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 1429-1438.	1.5	1
471	Shake-up of a light atom in a collision with a hard wall. Physical Review A, 2000, 63, .	2.5	1
472	Scattering angle-integrated (total) and magnetic sublevel cross-sections and degree of linear polarization for electron and proton induced excitation [HeI (n=2–5)] of helium. Atomic Data and Nuclear Data Tables, 2003, 83, 45-69.	2.4	1
473	Electron scattering from the ground state of mercury. AIP Conference Proceedings, 2003, , .	0.4	1
474	Three Body Coulomb Scattering above the Ionization Threshold. Physica Scripta, 2004, 110, 247.	2.5	1
475	Positron-impact ionisation of hydrogen near the threshold. Journal of Physics: Conference Series, 2007, 88, 012062.	0.4	1
476	Near-threshold positron-hydrogen ionization. Few-Body Systems, 2008, 44, 221-223.	1.5	1
477	Scattering theory with the Coulomb potential. Journal of Physics: Conference Series, 2009, 194, 012017.	0.4	1
478	Double K-shell photoionization of low-Z atoms and He-like ions. European Physical Journal: Special Topics, 2009, 169, 23-27.	2.6	1
479	Relativistic Convergent Close-Coupling method for excitation and ionization processes in electron collisions with atoms and ions. Journal of Physics: Conference Series, 2009, 194, 042005.	0.4	1
480	Inclusion of the Breit interaction in the relativistic convergent close-coupling method. Journal of Physics: Conference Series, 2009, 194, 062005.	0.4	1
481	Calculation of electron-impact ionization of potassium. Journal of Physics: Conference Series, 2009, 194, 042036.	0.4	1
482	Convergent close-coupling calculations of positron-helium collisions. Journal of Physics: Conference Series, 2009, 194, 072009.	0.4	1
483	Electron-impact ionisation of atoms and ions. Journal of Physics: Conference Series, 2009, 185, 012003.	0.4	1
484	Spin-resolved electron-impact ionisation of atoms. Journal of Physics: Conference Series, 2010, 212, 012017.	0.4	1
485	Single-photon double K-shell ionization of low-Z atoms. Journal of Physics: Conference Series, 2010, 212, 012006.	0.4	1
486	Comment on "Semiempirical potentials for positron scattering by atoms― Physical Review A, 2012, 85, .	2.5	1

#	Article	IF	CITATIONS
487	Fully quantal close-coupling approach to antiproton-hydrogen collisions. Journal of Physics: Conference Series, 2012, 388, 082015.	0.4	1
488	Calculations of electron scattering from cadmium. Journal of Physics: Conference Series, 2012, 388, 042026.	0.4	1
489	Two-center convergent close-coupling calculations for positron-lithium and positron-sodium collisions. Journal of Physics: Conference Series, 2012, 388, 072011.	0.4	1
490	Negative ion resonance measurements in the autoionizing region of helium measured across the complete angular scattering range (0°–180°). Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 035001.	1.5	1
491	Close-coupling approach to antiproton-impact ionisation of H ₂ with analytical spherical averaging. Journal of Physics: Conference Series, 2014, 488, 102032.	0.4	1
492	Fully quantum-mechanical treatment of proton-hydrogen scattering. Journal of Physics: Conference Series, 2015, 635, 022100.	0.4	1
493	Calculation of atomic photoionization using the nonsingular convergent close-coupling method. Physical Review A, 2017, 95, .	2.5	1
494	Development of convergent close-coupling approach to hadron interactions with matter. Journal of Physics: Conference Series, 2019, 1154, 012013.	0.4	1
495	Positron-impact direct ionization of lithium, sodium and potassium atoms. European Physical Journal D, 2021, 75, 1.	1.3	1
496	Principal Quantum Number Dependence for Electron–Hydrogen Collisions. Australian Journal of Physics, 1996, 49, 291.	0.6	1
497	Momentum-Space Convergent-Close-Coupling Method for a Model e-H Scattering Problem. , 1996, , 161-180.		1
498	Photoionization, Rayleigh, and Raman scattering cross sections for the alkali atoms. Atomic Data and Nuclear Data Tables, 2021, 143, 101474.	2.4	1
499	The stopping power of hydrogen for protons and antiprotons. Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy, 2019, , 227-254.	0.5	1
500	The gravitational lens effect of galaxies and black holes. Bulletin of the Australian Mathematical Society, 1987, 35, 317-318.	0.5	0
501	Theoretical and experimental investigation of electron-helium scattering. AIP Conference Proceedings, $1996, \ldots$	0.4	0
502	Helium Double Photoionisation: An Accurate Solution of a Three-body Coulomb Problem. Australian Journal of Physics, 1998, 51, 655.	0.6	0
503	Angular momentum transferred in inelastically scattered P to S state electron-atom collisions. AIP Conference Proceedings, 2000, , .	0.4	0
504	Calculation of electron-barium scattering. AIP Conference Proceedings, 2000, , .	0.4	0

#	Article	IF	Citations
505	Non-statistical magnetic substate populations following excitation of helium by electron and proton impact. AIP Conference Proceedings, 2001, , .	0.4	0
506	Close-coupling approach to ionization processes. AIP Conference Proceedings, 2002, , .	0.4	0
507	Electron-photon correlations in electron-impact excitation of alkaline-earth atoms. AIP Conference Proceedings, 2002, , .	0.4	0
508	Effect of quenching in resonant coherent excitation of hydrogen atoms scattered from LiF surfaces. Physical Review A, 2003, 67, .	2.5	0
509	Various problems in electron-atom collision theory. AIP Conference Proceedings, 2003, , .	0.4	0
510	Publisher's Note: Angle-differential cross sections and spin-asymmetry parameters for spin-polarized electron-impact excitation of spin-polarized cesium atoms [Phys. Rev. A70, 012707 (2004)]. Physical Review A, 2004, 70, .	2.5	0
511	Theory of atomic ionization and the coulomb three-body breakup. AIP Conference Proceedings, 2005, , .	0.4	0
512	Theory of Electron Impact Ionization of Atoms. AIP Conference Proceedings, 2006, , .	0.4	0
513	CzaschetÂal.Reply:. Physical Review Letters, 2007, 98, .	7.8	0
514	RECENT PROGRESS IN ATOMIC IONISATION THEORY. , 2008, , .		0
515	Double K-shell photoionization and universal scaling laws. Journal of Physics: Conference Series, 2009, 194, 022040.	0.4	0
516	Exploring differences of atomic and molecular ionization by electron impact. Journal of Physics: Conference Series, 2009, 194, 052019.	0.4	0
517	Generalisation of scattering theory to charged particles. Journal of Physics: Conference Series, 2009, 185, 012017.	0.4	0
518	Creation, destruction, and transfer of atomic multipole moments by electron scattering: Quantum mechanical treatment. Journal of Physics: Conference Series, 2009, 194, 042002.	0.4	0
519	Surface-Integral Approach to the Coulomb Few-Body Scattering Problem. EPJ Web of Conferences, 2010, 3, 04014.	0.3	0
520	Publisher's Note: Relativistic and Close-Coupling Effects in the Spin Polarization of Low-Energy Electrons Scattered Elastically from Cadmium [Phys. Rev. Lett. 107 < /b>, 093202 (2011)]. Physical Review Letters, 2011, 107, .	7.8	0
521	Benchmark Calculations of Electron-Impact Differential Cross Sections., 2011,,.		0
522	Electron scattering in hot-dense plasmas. Journal of Physics: Conference Series, 2012, 388, 042049.	0.4	0

#	Article	IF	CITATIONS
523	RCCC calculations for electron scattering on quasi-two electron targets. Journal of Physics: Conference Series, 2012, 388, 042014.	0.4	O
524	Low energy positron scattering from krypton and xenon. Journal of Physics: Conference Series, 2012, 388, 072021.	0.4	0
525	Differential cross-sections for the double photoionization of lithium. Journal of Physics: Conference Series, 2012, 388, 022053.	0.4	0
526	Convergent close coupling calculations for positron-magnesium scattering. Journal of Physics: Conference Series, 2012, 388, 072007.	0.4	0
527	Kinematically complete picture of positron-impact ionisation of hydrogen. Journal of Physics: Conference Series, 2012, 388, 072009.	0.4	0
528	Breit interaction effect on the polarization of the Lyman- \hat{l}_{\pm} ₁ x-ray line emitted by hydrogen-like ions excited by electron impact. Journal of Physics: Conference Series, 2012, 388, 062003.	0.4	0
529	Atomic photoionization: When does it actually begin?. Journal of Physics: Conference Series, 2012, 388, 032009.	0.4	0
530	(e, 2e) on helium: complete agreement between experiment and theory. Journal of Physics: Conference Series, 2012, 388, 042043.	0.4	0
531	Electron excitation in thin metal films due to the magnetic field of ultrashort laser pulses. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2504.	2.1	0
532	Atomic data and collisional–radiative model for beryllium and its ions. Physica Scripta, 2014, T161, 014007.	2.5	0
533	Two electron interference in angular resolved double photoionization of Mg. Journal of Physics: Conference Series, 2014, 488, 012023.	0.4	0
534	Nonperturbative electron-ion scattering theory incorporating the MÃ, ller interaction. Journal of Physics: Conference Series, 2014, 488, 062018.	0.4	0
535	Interference between direct ionisation and positronium formation in continuum in positron-hydrogen collisions. Journal of Physics: Conference Series, 2014, 488, 072003.	0.4	0
536	Different representations of continuum in the positron-hydrogen scattering problem. Journal of Physics: Conference Series, 2014, 488, 072006.	0.4	0
537	Two-electron interference in angular resolved double photoionization of Mg. Journal of Physics: Conference Series, 2014, 488, 022006.	0.4	0
538	Spin asymmetries for electron-thallium scattering calculated with the relativistic convergent close-coupling method. Journal of Physics: Conference Series, 2014, 488, 042014.	0.4	0
539	Single photon double ionization of Helium at 800 eV – observation of the Quasi Free Mechanism. Journal of Physics: Conference Series, 2014, 488, 022007.	0.4	0
540	Accurate stopping power calculations for antiprotons and protons. Journal of Physics: Conference Series, 2015, 635, 022034.	0.4	0

#	Article	IF	Citations
541	Enhancement of antihydrogen formation in antiproton collisions with excited-state positronium. Journal of Physics: Conference Series, 2015, 635, 022008.	0.4	O
542	lonisation of noble gas atoms and H2O by antiproton impact. Journal of Physics: Conference Series, 2015, 635, 022032.	0.4	0
543	Calculations of electron and positron scattering from vibrationally excited H2+ and H2. Journal of Physics: Conference Series, 2015, 635, 072047.	0.4	0
544	e-Zn inelastic scattering at 80 eV. Journal of Physics: Conference Series, 2015, 635, 092102.	0.4	0
545	Configuration space method to calculate rearrangement matrix elements. Journal of Physics: Conference Series, 2020, 1412, 222004.	0.4	0
546	Convergent close-coupling calculations of positron collisions with the hydrogen negative ion. Journal of Physics: Conference Series, 2020, 1412, 222005.	0.4	0
547	Proton scattering from ground and excited states of atomic hydrogen. Journal of Physics: Conference Series, 2020, 1412, 152031.	0.4	0
548	Differential cross sections for ionisation of helium by proton impact. Journal of Physics: Conference Series, 2020, 1412, 152045.	0.4	0
549	Coupled-channel calculations of ionisation of atomic hydrogen by multiply-charged bare ions. Journal of Physics: Conference Series, 2020, 1412, 162008.	0.4	0
550	Electron energy deposition in molecular hydrogen gas: a Monte Carlo simulation using convergent close-coupling cross sections. Plasma Sources Science and Technology, 2021, 30, 115004.	3.1	0
551	Recent Progress in Theory of Atomic Double Photoionization. , 2001, , 215-229.		0
552	Convergent Close-Coupling Approach to Electronâ€"Atom Collisions. Springer Series on Atomic, Optical, and Plasma Physics, 2003, , 121-135.	0.2	0
553	CALCULATION OF IONIZATION AND EXCITATION PROCESSES USING THE CONVERGENT CLOSE-COUPLING METHOD., 2006,,.		0
554	Unified Theory of Scattering for Arbitrary Potentials. , 2007, , .		0
555	Is Single Electron Excitation in Helium Now Fully Understood?. , 1996, , 45-55.		0
556	Total and Single Differential Cross Sections for He Double Photoionization Calculated by the CCC Method., 1997,, 121-125.		0
557	Convergent close-coupling calculations of low-energy electron-impact ionization. European Physical Journal Special Topics, 1999, 09, Pr6-41-Pr6-44.	0.2	0
558	Photoionization with excitation and double photoionization of two-electron atomic targets. European Physical Journal Special Topics, 1999, 09, Pr6-79-Pr6-83.	0.2	0

#	Article	IF	CITATIONS
559	Role of Target Resonances In Low-energy nucleon and $\hat{l}\pm$ Interactions with Weakly-bound Nuclei. , 2017, , .		O
560	Recent Progress in Electron-Atom Scattering. , 2002, , 15-31.		0
561	Mechanisms of Photo Double Ionization of Helium by 530 eV Photons. , 2005, , 121-129.		О
562	Definition of Cross Sections for the Creation, Destruction, and Transfer of Atomic Multipole Moments by Electron Scattering: Quantum Mechanical Treatment., 2008,, 69-89.		0