Jochen Kuper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1222572/publications.pdf

Version: 2024-02-01

567281 580821 1,182 25 15 25 citations h-index g-index papers 27 27 27 1238 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Interaction Efficiency of XPD-p44 With Bulky DNA Damages Depends on the Structure of the Damage. Frontiers in Cell and Developmental Biology, 2021, 9, 617160.	3.7	4
2	Cesium based phasing of macromolecules: a general easy to use approach for solving the phase problem. Scientific Reports, 2021, 11, 17038.	3.3	1
3	Three targets in one complex: A molecular perspective of TFIIH in cancer therapy. DNA Repair, 2021, 105, 103143.	2.8	6
4	Computed structures of core eukaryotic protein complexes. Science, 2021, 374, eabm4805.	12.6	316
5	Structural basis for CDK7 activation by MAT1 and Cyclin H. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26739-26748.	7.1	26
6	Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. Rna, 2020, 26, 1448-1463.	3.5	34
7	The TFIIH subunits p44/p62 act as a damage sensor during nucleotide excision repair. Nucleic Acids Research, 2020, 48, 12689-12696.	14.5	17
8	Single molecule analysis reveals monomeric XPA bends DNA and undergoes episodic linear diffusion during damage search. Nature Communications, 2020, 11, 1356.	12.8	16
9	In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair. Nature Communications, 2020, 11, 1667.	12.8	32
10	How to limit the speed of a motor: the intricate regulation of the XPB ATPase and translocase in TFIIH. Nucleic Acids Research, 2020, 48, 12282-12296.	14.5	14
11	The intricate network between the p34 and p44 subunits is central to the activity of the transcription/DNA repair factor TFIIH. Nucleic Acids Research, 2017, 45, 10872-10883.	14.5	21
12	Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. Nature Microbiology, 2017, 2, 1523-1532.	13.3	48
13	Catabolism of the Cholesterol Side Chain in <i>Mycobacterium tuberculosis</i> Is Controlled by a Redox-Sensitive Thiol Switch. ACS Infectious Diseases, 2017, 3, 666-675.	3.8	16
14	Role of XPD in cellular functions: To TFIIH and beyond. DNA Repair, 2016, 44, 136-142.	2.8	55
15	Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the <i>Yersinia pestis</i> FabV Enoyl-ACP Reductase. Biochemistry, 2016, 55, 2992-3006.	2.5	6
16	FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks. Nucleic Acids Research, 2016, 44, 3219-3232.	14.5	41
17	Structural insights into the recognition of cisplatin and AAF-dG lesion by Rad14 (XPA). Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8272-8277.	7.1	46
18	The Structure of the TFIIH p34 Subunit Reveals a Von Willebrand Factor A Like Fold. PLoS ONE, 2014, 9, e102389.	2.5	10

#	Article	IF	CITATIONS
19	Impact of Age-Associated Cyclopurine Lesions on DNA Repair Helicases. PLoS ONE, 2014, 9, e113293.	2.5	21
20	In TFIIH, XPD Helicase Is Exclusively Devoted to DNA Repair. PLoS Biology, 2014, 12, e1001954.	5.6	79
21	DNA Helicases in NER, BER, and MMR. Advances in Experimental Medicine and Biology, 2013, 767, 203-224.	1.6	20
22	Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO Journal, 2012, 31, 494-502.	7.8	114
23	Damage recognition in nucleotide excision DNA repair. Current Opinion in Structural Biology, 2012, 22, 88-93.	5.7	38
24	Pore-forming activity of BAD is regulated by specific phosphorylation and structural transitions of the C-terminal part. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 162-169.	2.4	6
25	Crystal Structure of the FeS Cluster–Containing Nucleotide Excision Repair Helicase XPD. PLoS Biology, 2008, 6, e149.	5.6	195