Günter Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1222210/publications.pdf

Version: 2024-02-01

57	5,043	36	57
papers	citations	h-index	g-index
69	69	69	4590 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Protein chain collapse modulation and folding stimulation by GroEL-ES. Science Advances, 2022, 8, eabl6293.	10.3	14
2	Bacterial ribosome collision sensing by a MutS DNA repair ATPase paralogue. Nature, 2022, 603, 509-514.	27.8	27
3	Protein Synthesis in the Developing Neocortex at Near-Atomic Resolution Reveals Ebp1-Mediated Neuronal Proteostasis at the 60S Tunnel Exit. Molecular Cell, 2021, 81, 304-322.e16.	9.7	27
4	Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. Science, 2021, 371, 57-64.	12.6	80
5	Nα-terminal acetylation of proteins by NatA and NatB serves distinct physiological roles in Saccharomyces cerevisiae. Cell Reports, 2021, 34, 108711.	6.4	26
6	Mechanisms of Cotranslational Protein Maturation in Bacteria. Frontiers in Molecular Biosciences, 2021, 8, 689755.	3.5	20
7	Combinations of slow-translating codon clusters can increase mRNA half-life in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
8	The Anti-Aggregation Holdase Hsp33 Promotes the Formation of Folded Protein Structures. Biophysical Journal, 2020, 118, 85-95.	0.5	27
9	DENR promotes translation reinitiation via ribosome recycling to drive expression of oncogenes including ATF4. Nature Communications, 2020, 11, 4676.	12.8	58
10	Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates. Journal of Molecular Biology, 2020, 432, 166696.	4.2	9
11	Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells. Molecular Cell, 2020, 79, 561-574.e5.	9.7	96
12	Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production. Cell, 2020, 181, 818-831.e19.	28.9	130
13	GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct Metabolic Profile. Cell Stem Cell, 2019, 25, 241-257.e8.	11.1	66
14	Monitoring Cell-Type–Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress. Circulation Research, 2019, 125, 431-448.	4.5	56
15	Selective ribosome profiling to study interactions of translating ribosomes in yeast. Nature Protocols, 2019, 14, 2279-2317.	12.0	28
16	A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLoS Computational Biology, 2019, 15, e1007070.	3.2	50
17	Translational Regulation of Pmt1 and Pmt2 by Bfr1 Affects Unfolded Protein O-Mannosylation. International Journal of Molecular Sciences, 2019, 20, 6220.	4.1	4
18	Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Annual Review of Biochemistry, 2019, 88, 337-364.	11.1	138

#	Article	lF	Citations
19	The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity. ELife, 2019, 8, .	6.0	9
20	Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches. Journal of Molecular Biology, 2018, 430, 438-449.	4.2	29
21	Evolutionarily-Encoded Translation Kinetics Coordinate Co-Translational SSB Chaperone Binding in Yeast. Biophysical Journal, 2018, 114, 395a.	0.5	1
22	Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature, 2018, 561, 268-272.	27.8	266
23	SecA Cotranslationally Interacts with Nascent Substrate Proteins <i>In Vivo</i> . Journal of Bacteriology, 2017, 199, .	2.2	59
24	Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation. Journal of Biological Chemistry, 2017, 292, 19610-19627.	3.4	4
25	Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding. Cell, 2017, 170, 298-311.e20.	28.9	154
26	Analyzing the Complex Regulatory Landscape of Hfq – an Integrative, Multi-Omics Approach. Frontiers in Microbiology, 2017, 8, 1784.	3.5	17
27	Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. Science Advances, 2016, 2, e1600379.	10.3	33
28	Global profiling of SRP interaction with nascent polypeptides. Nature, 2016, 536, 219-223.	27.8	125
29	Alternative modes of client binding enable functional plasticity of Hsp70. Nature, 2016, 539, 448-451.	27.8	167
30	Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding. Nature Communications, 2016, 7, 10341.	12.8	45
31	Trigger Factor Reduces the Force Exerted on the Nascent Chain by a Cotranslationally Folding Protein. Journal of Molecular Biology, 2016, 428, 1356-1364.	4.2	74
32	Finding nascent proteins the right home. Science, 2015, 348, 182-183.	12.6	1
33	Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science, 2015, 350, 678-680.	12.6	160
34	Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Letters, 2015, 589, 3654-3664.	2.8	55
35	Monitoring Protein Misfolding by Site-Specific Labeling of Proteins In Vivo. PLoS ONE, 2014, 9, e99395.	2.5	20
36	Chaperone Action at the Single-Molecule Level. Chemical Reviews, 2014, 114, 660-676.	47.7	51

#	Article	IF	CITATIONS
37	Co-translational mechanisms of protein maturation. Current Opinion in Structural Biology, 2014, 24, 24-33.	5.7	128
38	Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding. Nature Structural and Molecular Biology, 2013, 20, 843-850.	8.2	58
39	Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature, 2013, 500, 98-101.	27.8	118
40	Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes. Nature Protocols, 2013, 8, 2212-2239.	12.0	112
41	Genome-scale Co-evolutionary Inference Identifies Functions and Clients of Bacterial Hsp90. PLoS Genetics, 2013, 9, e1003631.	3.5	27
42	Concerted Action of the Ribosome and the Associated Chaperone Trigger Factor Confines Nascent Polypeptide Folding. Molecular Cell, 2012, 48, 63-74.	9.7	94
43	Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor InÂVivo. Cell, 2011, 147, 1295-1308.	28.9	419
44	SecA Interacts with Ribosomes in Order to Facilitate Posttranslational Translocation in Bacteria. Molecular Cell, 2011, 41, 343-353.	9.7	90
45	Structure and function of the molecular chaperone Trigger Factor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 650-661.	4.1	210
46	Largeâ€scale purification of ribosomeâ€nascent chain complexes for biochemical and structural studies. FEBS Letters, 2009, 583, 2407-2413.	2.8	41
47	Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO Journal, 2009, 28, 602-613.	7.8	126
48	The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nature Structural and Molecular Biology, 2009, 16, 589-597.	8.2	420
49	A peptide deformylase–ribosome complex reveals mechanism of nascent chain processing. Nature, 2008, 452, 108-111.	27.8	93
50	Dissecting functional similarities of ribosome-associated chaperones fromSaccharomyces cerevisiaeandEscherichia coli. Molecular Microbiology, 2005, 57, 357-365.	2. 5	19
51	Dimerization of the Human E3 Ligase CHIP via a Coiled-coil Domain Is Essential for Its Activity. Journal of Biological Chemistry, 2004, 279, 2673-2678.	3.4	105
52	Trigger Factor Peptidyl-prolyl cis/trans Isomerase Activity Is Not Essential for the Folding of Cytosolic Proteins in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 14165-14170.	3 . 4	94
53	Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Molecular Microbiology, 2003, 47, 1317-1328.	2.5	174
54	Three-State Equilibrium of Escherichia coli Trigger Factor. Biological Chemistry, 2002, 383, 1611-9.	2. 5	90

#	Article	IF	CITATIONS
55	L23 protein functions as a chaperone docking site on the ribosome. Nature, 2002, 419, 171-174.	27.8	309
56	Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 229-33.	1.0	18
57	Binding specificity of <i>Escherichia coli</i> trigger factor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14244-14249.	7.1	164