Virginia Martinez-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1221508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular decoding using luminescence from an entangled porous framework. Nature Communications, 2011, 2, 168.	12.8	715
2	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 2 Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 7443-7450.	2.6	181
3	Luminescence Properties of Rhodamine 6G Intercalated in Surfactant/Clay Hybrid Thin Solid Films. Langmuir, 2004, 20, 4715-4719.	3.5	145
4	Structural, photophysical and lasing properties of pyrromethene dyes. International Reviews in Physical Chemistry, 2005, 24, 339-374.	2.3	137
5	Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2007, 8, 85-108.	11.6	131
6	Photophysical Properties of the Pyrromethene 597 Dye:  Solvent Effect. Journal of Physical Chemistry A, 2004, 108, 5503-5508.	2.5	94
7	Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT. Photochemistry and Photobiology, 2020, 96, 458-477.	2.5	92
8	Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. Chemistry - A European Journal, 2017, 23, 4837-4848.	3.3	87
9	Characterization of Rhodamine 6G Aggregates Intercalated in Solid Thin Films of Laponite Clay. 1. Absorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 20030-20037.	2.6	84
10	Orientation of Adsorbed Dyes in the Interlayer Space of Clays. 2 Fluorescence Polarization of Rhodamine 6G in Laponite Films. Chemistry of Materials, 2006, 18, 1407-1416.	6.7	80
11	Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: towards a solvent-independent standard in the vis region. RSC Advances, 2016, 6, 41991-41998.	3.6	80
12	Photophysical properties of a new 8-phenyl analogue of the laser dye PM567 in different solvents: internal conversion mechanisms. Chemical Physics Letters, 2004, 385, 29-35.	2.6	68
13	Modulation of the photophysical properties of BODIPY dyes by substitution at their meso position RSC Advances, 2011, 1, 677.	3.6	62
14	Characterization of Supported Solid Thin Films of Laponite Clay. Intercalation of Rhodamine 6G Laser Dye. Langmuir, 2004, 20, 5709-5717.	3.5	60
15	Charge Transfer and Exciplex Emissions from a Naphthalenediimide-Entangled Coordination Framework Accommodating Various Aromatic Guests. Journal of Physical Chemistry C, 2012, 116, 26084-26090.	3.1	60
16	Exploration of Single Molecule Events in a Haloperoxidase and Its Biomimic: Localization of Halogenation Activity. Journal of the American Chemical Society, 2008, 130, 13192-13193.	13.7	57
17	Spectral Properties of Rhodamine 3B Adsorbed on the Surface of Montmorillonites with Variable Layer Charge. Langmuir, 2007, 23, 1851-1859.	3.5	55
18	Adsorption of Rhodamine 3B Dye on Saponite Colloidal Particles in Aqueous Suspensions. Langmuir, 2002, 18, 2658-2664.	3.5	52

#	Article	IF	CITATIONS
19	Theoretical study of the ground and excited electronic states of pyrromethene 546 laser dye and related compounds. Chemical Physics, 2004, 296, 13-22.	1.9	48
20	Orientation of Adsorbed Dyes in the Interlayer Space of Clays. 1. Anisotropy of Rhodamine 6G in Laponite Films by Vis-Absorption with Polarized Light. Chemistry of Materials, 2005, 17, 4134-4141.	6.7	48
21	Difluoro-boron-triaza-anthracene: a laser dye in the blue region. Theoretical simulation of alternative difluoro-boron-diaza-aromatic systems. Physical Chemistry Chemical Physics, 2011, 13, 3437-3445.	2.8	43
22	Singlet Fission Mediated Photophysics of BODIPY Dimers. Journal of Physical Chemistry Letters, 2018, 9, 641-646.	4.6	42
23	AcetylacetonateBODIPYâ€Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents. Chemistry - A European Journal, 2017, 23, 10139-10147.	3.3	38
24	Structural and spectroscopic characteristics of Pyrromethene 567 laser dye. A theoretical approach. Physical Chemistry Chemical Physics, 2004, 6, 4247-4253.	2.8	35
25	Flavin Bioorthogonal Photocatalysis Toward Platinum Substrates. ACS Catalysis, 2020, 10, 187-196.	11.2	34
26	Molecular Forces Governing Shear and Tensile Failure in Clay-Dye Hybrid Materials. Chemistry of Materials, 2014, 26, 4338-4345.	6.7	33
27	New fluorescent polarization method to evaluate the orientation of adsorbed molecules in uniaxial 2D layered materials. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 44-49.	3.9	28
28	Application of Fluorescence with Polarized Light to Evaluate the Orientation of Dyes Adsorbed in Layered Materials. Journal of Fluorescence, 2006, 16, 233-240.	2.5	26
29	Adsorption of fluorescent R6G dye into organophilic C12TMA laponite films. Journal of Colloid and Interface Science, 2008, 321, 212-219.	9.4	26
30	Distribution and orientation study of dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy approach. Journal of Materials Chemistry, 2011, 21, 269-276.	6.7	24
31	Strong intramolecular charge transfer emission in benzobisoxazole cruciforms: solvatochromic dyes as polarity indicators. Physical Chemistry Chemical Physics, 2013, 15, 18023.	2.8	23
32	Effect of surfactant C12TMA molecules on the self-association of R6G dye in thin films of laponite clay. Materials Chemistry and Physics, 2009, 116, 550-556.	4.0	22
33	Formation of a Nonlinear Optical Host–Guest Hybrid Material by Tight Confinement of LDSâ€722 into Aluminophosphate 1D Nanochannels. Chemistry - A European Journal, 2016, 22, 15700-15711.	3.3	22
34	Highly Luminescent and Optically Switchable Hybrid Material by One-Pot Encapsulation of Dyes into MgAPO-11 Unidirectional Nanopores. ACS Photonics, 2014, 1, 205-211.	6.6	21
35	Resonance Energy Transfer between Dye Molecules in Colloids of a Layered Silicate. The Effect of Dye Surface Concentration. Journal of Physical Chemistry C, 2017, 121, 8300-8309.	3.1	21
36	Methylthio BODIPY as a standard triplet photosensitizer for singlet oxygen production: a photophysical study. Physical Chemistry Chemical Physics, 2019, 21, 20403-20414.	2.8	21

#	Article	IF	CITATIONS
37	Photophysics of Rhodamine 6G Laser Dye in Ordered Surfactant (C12TMA)/Clay (Laponite) Hybrid Films. Journal of Physical Chemistry C, 2009, 113, 965-970.	3.1	20
38	Modulating Dye Aggregation by Incorporation into 1Dâ€MgAPO Nanochannels. Chemistry - A European Journal, 2013, 19, 9859-9865.	3.3	20
39	Enhanced Phosphorescence Emission by Incorporating Aromatic Halides into an Entangled Coordination Framework Based on Naphthalenediimide. ChemPhysChem, 2014, 15, 2517-2521.	2.1	20
40	Manipulating Chargeâ€Transfer States in BODIPYs: A Model Strategy to Rapidly Develop Photodynamic Theragnostic Agents. Chemistry - A European Journal, 2020, 26, 601-605.	3.3	20
41	On the Arrangements of R6G Molecules in Organophilic C12TMA/Lap Clay Films for Low Dye Loadings. Langmuir, 2010, 26, 930-937.	3.5	19
42	Versatile Photoactive Materials Based on Zeoliteâ€L Doped with Laser Dyes. ChemPlusChem, 2012, 77, 61-70.	2.8	18
43	Strategies for modulating the luminescence properties of pyronin Y dye–clay films: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 8730-8738.	2.8	18
44	Fully Functionalizable β,β′-BODIPY Dimer: Synthesis, Structure, and Photophysical Signatures. Journal of Organic Chemistry, 2018, 83, 10186-10196.	3.2	17
45	Naturally Assembled Excimers in Xanthenes as Singular and Highly Efficient Laser Dyes in Liquid and Solid Media. Advanced Optical Materials, 2013, 1, 984-990.	7.3	15
46	A versatile fluorescent molecular probe endowed with singlet oxygen generation under white-light photosensitization. Dyes and Pigments, 2017, 142, 77-87.	3.7	14
47	Adapting BODIPYs to singlet oxygen production on silica nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 13746-13755.	2.8	13
48	One-Directional Antenna Systems: Energy Transfer from Monomers to J-Aggregates within 1D Nanoporous Aluminophosphates. ACS Photonics, 2018, 5, 151-157.	6.6	13
49	Concerning the color change of pyrromethene 650 dye in electron-donor solvents. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 298-305.	3.9	10
50	Resonance energy transfer between dye molecules in hybrid films of a layered silicate, including the effect of dye concentration thereon. Applied Clay Science, 2018, 155, 57-64.	5.2	10
51	A general modular approach for the solubility tagging of BODIPY dyes. Dyes and Pigments, 2019, 170, 107545.	3.7	10
52	One-Dimensional Antenna Systems by Crystallization Inclusion of Dyes (One-Pot Synthesis) within Zeolitic MgAPO-36 Nanochannels. Journal of Physical Chemistry C, 2013, 117, 24063-24070.	3.1	9
53	Preparation, Photophysical Characterization, and Modeling of LDS722/Laponite 2D-Ordered Hybrid Films. Langmuir, 2014, 30, 10112-10117.	3.5	9
54	Synthesis and characterization of near-infrared fluorescent and magnetic iron zero-valent nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315, 1-7.	3.9	9

#	Article	IF	CITATIONS
55	Enhancing the Photocatalytic Conversion of Pt(IV) Substrates by Flavoprotein Engineering. Journal of Physical Chemistry Letters, 2021, 12, 4504-4508.	4.6	9
56	Improving the fluorescence polarization method to evaluate the orientation of fluorescent systems adsorbed in ordered layered materials. Journal of Luminescence, 2009, 129, 1336-1340.	3.1	8
57	Anisotropic fluorescence materials: Effect of the synthesis conditions over the incorporation, alignment and aggregation of Pyronine Y within MgAPO-5. Microporous and Mesoporous Materials, 2013, 172, 190-199.	4.4	7
58	Enhanced Charge-Transfer Emission in Polyimides by Cyano-Groups Doping. Journal of Physical Chemistry B, 2015, 119, 5685-5692.	2.6	7
59	Shedding light on the mitochondrial matrix through a functional membrane transporter. Chemical Science, 2020, 11, 1052-1065.	7.4	7
60	Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. International Journal of Molecular Sciences, 2021, 22, 6618.	4.1	7
61	Viewpoint Regarding "Singlet Fission Mediated Photophysics of BODIPY Dimers― Journal of Physical Chemistry Letters, 2021, 12, 7439-7441.	4.6	7
62	Tuning Light Emission towards White Light from a Naphthalenediimide-Based Entangled Metal-Organic Framework by Mixing Aromatic Guest Molecules. Polymers, 2018, 10, 188.	4.5	6
63	Functionalized Fluorescent Silica Nanoparticles for Bioimaging of Cancer Cells. Sensors, 2020, 20, 5590.	3.8	5
64	Red haloBODIPYs as theragnostic agents: The role of the substitution at meso position. Dyes and Pigments, 2022, 198, 110015.	3.7	5
65	White Light Emission by Simultaneous One Pot Encapsulation of Dyes into One-Dimensional Channelled Aluminophosphate. Nanomaterials, 2020, 10, 1173.	4.1	4
66	BINOL blocks as accessible triplet state modulators in BODIPY dyes. Chemical Communications, 2022, 58, 6385-6388.	4.1	4
67	Fluorescence Anisotropy to Study the Preferential Orientation of Fluorophores in Ordered Bi-Dimensional Systems: Rhodamine 6G/Laponite Layered Films. Reviews in Fluorescence, 2010, , 1-35.	0.5	3
68	Enhancement of NIR emission by a tight confinement of a hemicyanine dye within zeolitic MgAPO-5 nanochannels. Photochemical and Photobiological Sciences, 2018, 17, 917-922.	2.9	3
69	An nπ* gated decay mediates excited-state lifetimes of isolated azaindoles. Physical Chemistry Chemical Physics, 2020, 22, 18639-18645.	2.8	3
70	Dye Encapsulation Into One-Dimensional Zeolitic Materials for Optical Applications. , 2019, , 229-248.		1