Sajni Josson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12206880/publications.pdf

Version: 2024-02-01

623734 794594 1,193 21 14 19 h-index citations g-index papers 21 21 21 2192 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Radiation modulation of MicroRNA in prostate cancer cell lines. Prostate, 2008, 68, 1599-1606.	2.3	158
2	MicroRNA 125b inhibition of B cell differentiation in germinal centers. International Immunology, 2010, 22, 583-592.	4.0	141
3	Tumor–stroma co-evolution in prostate cancer progression and metastasis. Seminars in Cell and Developmental Biology, 2010, 21, 26-32.	5.0	123
4	miR-409-3p/-5p Promotes Tumorigenesis, Epithelial-to-Mesenchymal Transition, and Bone Metastasis of Human Prostate Cancer. Clinical Cancer Research, 2014, 20, 4636-4646.	7.0	120
5	\hat{i}^2 2-Microglobulin Induces Epithelial to Mesenchymal Transition and Confers Cancer Lethality and Bone Metastasis in Human Cancer Cells. Cancer Research, 2011, 71, 2600-2610.	0.9	105
6	miR-154* and miR-379 in the DLK1-DIO3 MicroRNA Mega-Cluster Regulate Epithelial to Mesenchymal Transition and Bone Metastasis of Prostate Cancer. Clinical Cancer Research, 2014, 20, 6559-6569.	7.0	94
7	miR-17* Suppresses Tumorigenicity of Prostate Cancer by Inhibiting Mitochondrial Antioxidant Enzymes. PLoS ONE, 2010, 5, e14356.	2.5	80
8	RelB Enhances Prostate Cancer Growth: Implications for the Role of the Nuclear Factor-l®B Alternative Pathway in Tumorigenicity. Cancer Research, 2009, 69, 3267-3271.	0.9	61
9	Suppression of RelB-mediated manganese superoxide dismutase expression reveals a primary mechanism for radiosensitization effect of $1\hat{l}\pm$,25-dihydroxyvitamin D3 in prostate cancer cells. Molecular Cancer Therapeutics, 2007, 6, 2048-2056.	4.1	60
10	β2-Microglobulin-mediated Signaling as a Target for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 343-352.	1.7	53
11	SN52, a novel nuclear factor-l̂ºB inhibitor, blocks nuclear import of RelB:p52 dimer and sensitizes prostate cancer cells to ionizing radiation. Molecular Cancer Therapeutics, 2008, 7, 2367-2376.	4.1	50
12	Inhibition of ADAM9 expression induces epithelial phenotypic alterations and sensitizes human prostate cancer cells to radiation and chemotherapy. Prostate, 2011, 71, 232-240.	2.3	42
13	SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget, 2015, 6, 44072-44083.	1.8	29
14	In Vivo Targeting of ADAM9 Gene Expression Using Lentivirus-Delivered shRNA Suppresses Prostate Cancer Growth by Regulating REG4 Dependent Cell Cycle Progression. PLoS ONE, 2013, 8, e53795.	2.5	28
15	Inhibition of \hat{I}^2 2-Microglobulin/Hemochromatosis Enhances Radiation Sensitivity by Induction of Iron Overload in Prostate Cancer Cells. PLoS ONE, 2013, 8, e68366.	2.5	16
16	microRNAs and Prostate Cancer. Advances in Experimental Medicine and Biology, 2015, 889, 105-118.	1.6	15
17	Combined Dynamic Alterations in Urinary VEGF Levels and Tissue ADAM9 Expression as Markers for Lethal Phenotypic Progression of Prostate Cancer. Chinese Journal of Physiology, 2012, 55, 390-397.	1.0	9
18	Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics. Asian Journal of Urology, 2019, 6, 65-81.	1.2	8

Sajni Josson

#	Article	IF	CITATIONS
19	Targeting the tumor-stromal-immune cell axis. Oncoscience, 2015, 2, 743-744.	2.2	1
20	In situ Hybridization (ISH) and Quantum Dots (QD) of miRNAs. Bio-protocol, 2017, 7, e2138.	0.4	0
21	miRNA Characterization from the Extracellular Vesicles. Bio-protocol, 2017, 7, e2139.	0.4	O