
James M Downey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12206722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Pyroptosis in Ischemic and Reperfusion Injury of the Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 562-574.	2.0	20
2	What Are Optimal P2Y12 Inhibitor and Schedule of Administration in Patients With Acute Coronary Syndrome?. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 121-130.	2.0	6
3	Guidelines for evaluating myocardial cell death. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H891-H922.	3.2	135
4	A Review of Humoral Factors in Remote Preconditioning of the Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 403-421.	2.0	17
5	Ticagrelor Does Not Protect Isolated Rat Hearts, Thus Clouding Its Proposed Cardioprotective Role Through ENT 1 in Heart Tissue. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 371-376.	2.0	9
6	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	3.8	106
7	Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Research in Cardiology, 2018, 113, 32.	5.9	127
8	Reactive Oxygen Species as Intracellular Signaling Molecules in the Cardiovascular System. Current Cardiology Reviews, 2018, 14, 290-300.	1.5	84
9	The Highly Selective Caspase-1 Inhibitor VX-765 Provides Additive Protection Against Myocardial Infarction in Rat Hearts When Combined With a Platelet Inhibitor. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 574-578.	2.0	41
10	Letter by Downey and Cohen Regarding Article, "Protective Effects of Ticagrelor on Myocardial Injury After Infarction― Circulation, 2017, 135, e1000-e1001.	1.6	3
11	New and revisited approaches to preserving the reperfused myocardium. Nature Reviews Cardiology, 2017, 14, 679-693.	13.7	56
12	The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Research in Cardiology, 2017, 112, 64.	5.9	42
13	Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Medicinal Research Reviews, 2016, 36, 871-923.	10.5	35
14	Cangrelor-Mediated Cardioprotection Requires Platelets and Sphingosine Phosphorylation. Cardiovascular Drugs and Therapy, 2016, 30, 229-232.	2.6	43
15	Prospects for Creation of Cardioprotective Drugs Based on Cannabinoid Receptor Agonists. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 262-272.	2.0	24
16	Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology, 2015, 110, 3.	5.9	55
17	What is Wrong With Cardiac Conditioning? We May be Shooting at Moving Targets. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 357-369.	2.0	29
18	Status of P2Y12 treatment must be considered in evaluation of myocardial ischaemia/reperfusion injury. Cardiovascular Research, 2015, 106, 8-8.	3.8	5

#	Article	IF	CITATIONS
19	Signalling pathways and mechanisms of protection in pre―and postconditioning: historical perspective and lessons for the future. British Journal of Pharmacology, 2015, 172, 1913-1932.	5.4	100
20	Combined Cardioprotectant and Antithrombotic Actions of Platelet P2Y12 Receptor Antagonists in Acute Coronary Syndrome. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 179-190.	2.0	48
21	Triple Therapy Greatly Increases Myocardial Salvage During Ischemia/Reperfusion in the in situ Rat Heart. Cardiovascular Drugs and Therapy, 2013, 27, 403-412.	2.6	74
22	Two Classes of Anti-Platelet Drugs Reduce Anatomical Infarct Size in Monkey Hearts. Cardiovascular Drugs and Therapy, 2013, 27, 109-115.	2.6	61
23	Platelet P2Y ₁₂ Blockers Confer Direct Postconditioning-Like Protection in Reperfused Rabbit Hearts. Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 18, 251-262.	2.0	133
24	Myocardial protection with mild hypothermia. Cardiovascular Research, 2012, 94, 217-225.	3.8	68
25	A2B or not 2B: that is the question: AUTHORS' RETROSPECTIVE. Cardiovascular Research, 2012, 96, 198-201.	3.8	0
26	All Preconditioning-Related G Protein-Coupled Receptors Can Be Demonstrated in the Rabbit Cardiomyocyte. Journal of Cardiovascular Pharmacology and Therapeutics, 2012, 17, 190-198.	2.0	14
27	Pathophysiology of Myocardial Reperfusion Injury. , 2012, , 11-28.		0
28	ls It Time to Translate Ischemic Preconditioning's Mechanism of Cardioprotection into Clinical Practice?. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 273-280.	2.0	28
29	A _{2B} adenosine receptors inhibit superoxide production from mitochondrial complex I in rabbit cardiomyocytes via a mechanism sensitive to <i>Pertussis</i> toxin. British Journal of Pharmacology, 2011, 163, 995-1006.	5.4	33
30	lschemic Postconditioning: From Receptor to End-Effector. Antioxidants and Redox Signaling, 2011, 14, 821-831.	5.4	87
31	Evidence for an intracellular localization of the adenosine A2B receptor in rat cardiomyocytes. Basic Research in Cardiology, 2011, 106, 385-396.	5.9	26
32	Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Research in Cardiology, 2011, 106, 421-430.	5.9	57
33	Attenuation of infarction in cynomolgus monkeys: preconditioning and postconditioning. Basic Research in Cardiology, 2010, 105, 119-128.	5.9	37
34	AMP579 is revealed to be a potent A2b-adenosine receptor agonist in human 293 cells and rabbit hearts. Basic Research in Cardiology, 2010, 105, 129-137.	5.9	15
35	Mechanism of Cardioprotection by Early Ischemic Preconditioning. Cardiovascular Drugs and Therapy, 2010, 24, 225-234.	2.6	161
36	A _{2b} adenosine receptors can change their spots. British Journal of Pharmacology, 2010, 159, 1595-1597.	5.4	22

#	Article	IF	CITATIONS
37	Both A _{2a} and A _{2b} adenosine receptors at reperfusion are necessary to reduce infarct size in mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1262-H1264.	3.2	48
38	Cardioprotective PKG-independent NO signaling at reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H2028-H2036.	3.2	42
39	The small chill: mild hypothermia for cardioprotection?. Cardiovascular Research, 2010, 88, 406-414.	3.8	62
40	What Is the Optimal Postconditioning Algorithm?. Journal of Cardiovascular Pharmacology and Therapeutics, 2009, 14, 269-273.	2.0	25
41	O -Linked β- N -Acetylglucosamine. Circulation Research, 2009, 104, 7-8.	4.5	4
42	The role of cGMP and PKG in cardioprotection. BMC Pharmacology, 2009, 9, .	0.4	0
43	Modulation of receptor sensitivity: possible therapeutic target?. British Journal of Pharmacology, 2009, 156, 899-900.	5.4	1
44	BAY 58-2667, a nitric oxide-independent guanylyl cyclase activator, pharmacologically post-conditions rabbit and rat hearts. European Heart Journal, 2009, 30, 1607-1613.	2.2	42
45	Why Do We Still Not Have Cardioprotective Drugs?. Circulation Journal, 2009, 73, 1171-1177.	1.6	129
46	Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Research in Cardiology, 2008, 103, 54-59.	5.9	54
47	Adenosine: trigger and mediator of cardioprotection. Basic Research in Cardiology, 2008, 103, 203-215.	5.9	186
48	Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning. Basic Research in Cardiology, 2008, 103, 378-384.	5.9	51
49	Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning's success. Basic Research in Cardiology, 2008, 103, 464-471.	5.9	106
50	<i>Mapping Preconditioning's Signaling Pathways</i> . Annals of the New York Academy of Sciences, 2008, 1123, 187-196.	3.8	64
51	Free radicals in the heart: friend or foe?. Expert Review of Cardiovascular Therapy, 2008, 6, 589-591.	1.5	10
52	Response to Letter Regarding Article, $\hat{a} \in \hat{\alpha}$ Bypassing Big Pharma $\hat{a} \in \hat{\epsilon}$ Circulation, 2008, 117, .	1.6	0
53	Infarct limitation by a protein kinase G activator at reperfusion in rabbit hearts is dependent on sensitizing the heart to A2b agonists by protein kinase C. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1288-H1295.	3.2	47
54	Oestrogen plays a permissive role in cardioprotection. Cardiovascular Research, 2008, 79, 353-354.	3.8	3

#	Article	IF	CITATIONS
55	Abstract 1900: Preconditioning in Cynomolgus Monkey Heart Protects Against Both Ischemic and Reperfusion Injury. Circulation, 2008, 118, .	1.6	2
56	The pH Hypothesis of Postconditioning. Circulation, 2007, 115, 1895-1903.	1.6	267
57	cGMP signalling in pre- and post-conditioning: the role of mitochondria. Cardiovascular Research, 2007, 77, 344-352.	3.8	124
58	Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. Journal of Molecular and Cellular Cardiology, 2007, 42, 842-851.	1.9	62
59	Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. Journal of Molecular and Cellular Cardiology, 2007, 43, 262-271.	1.9	113
60	Total Liquid Ventilation Provides Ultra-Fast Cardioprotective Cooling. Journal of the American College of Cardiology, 2007, 49, 601-605.	2.8	56
61	Signaling pathways in ischemic preconditioning. Heart Failure Reviews, 2007, 12, 181-188.	3.9	286
62	Nicorandil opens mitochondrial KATP channels not only directly but also through a NO-PKG-dependent pathway. Basic Research in Cardiology, 2007, 102, 73-79.	5.9	20
63	Mitochondria and Their Role in Ischemia/Reperfusion Injury. , 2007, , 305-322.		1
64	Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovascular Research, 2006, 70, 231-239.	3.8	111
65	Localizing extracellular signal–regulated kinase (ERK) in pharmacological preconditioning's trigger pathway. Basic Research in Cardiology, 2006, 101, 159-167.	5.9	30
66	A really radical observation. Basic Research in Cardiology, 2006, 101, 190-191.	5.9	38
67	Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Research in Cardiology, 2006, 101, 311-318.	5.9	91
68	NECA at reperfusion limits infarction and inhibits formation of the mitochondrial permeability transition pore by activating p70S6 kinase. Basic Research in Cardiology, 2006, 101, 319-326.	5.9	51
69	Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Research in Cardiology, 2006, 101, 502-507.	5.9	100
70	Reducing Infarct Size in The Setting of Acute Myocardial Infarction. Progress in Cardiovascular Diseases, 2006, 48, 363-371.	3.1	44
71	Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H450-H457.	3.2	43
72	Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovascular Research, 2006, 70, 308-314.	3.8	229

#	Article	IF	CITATIONS
73	Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H441-H449.	3.2	121
74	Ischemic Preconditioning. , 2006, , 99-112.		1
75	Cardioprotection With Adenosine A2 Receptor Activation at Reperfusion. Journal of Cardiovascular Pharmacology, 2005, 46, 794-802.	1.9	31
76	Mechanisms of acetylcholine- and bradykinin-induced preconditioning. Vascular Pharmacology, 2005, 42, 201-209.	2.1	32
77	Postconditioning?s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3?kinase and guanylyl cyclase activation. Basic Research in Cardiology, 2005, 100, 57-63.	5.9	207
78	Peptide blockers of PKG inhibit ROS generation by acetylcholine and bradykinin in cardiomyocytes but fail to block protection in the whole heart. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1976-H1981.	3.2	24
79	We Think We See a Pattern Emerging Here. Circulation, 2005, 111, 120-121.	1.6	49
80	Protein Kinase G Transmits the Cardioprotective Signal From Cytosol to Mitochondria. Circulation Research, 2005, 97, 329-336.	4.5	272
81	Unraveling the mysteries of classical preconditioning. Journal of Molecular and Cellular Cardiology, 2005, 39, 845-848.	1.9	11
82	Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoK _{ATP} channel opening and leads to cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H468-H476.	3.2	224
83	Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2606-H2611.	3.2	70
84	Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H712-H718.	3.2	73
85	Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. Journal of the American College of Cardiology, 2004, 44, 1103-1110.	2.8	459
86	Protective and anti-protective effects of acute ethanol exposure in myocardial ischemia/reperfusion. Pathophysiology, 2004, 10, 113-119.	2.2	9
87	NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. Journal of Molecular and Cellular Cardiology, 2004, 36, 411-421.	1.9	135
88	Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. Journal of Molecular and Cellular Cardiology, 2004, 36, 435-443.	1.9	72
89	Mitochondria and their role in preconditioning's trigger phase. Basic Research in Cardiology, 2003, 98, 228-234.	5.9	23
90	Preconditioning the Myocardium: From Cellular Physiology to Clinical Cardiology. Physiological	28.8	925

Reviews, 2003, 83, 1113-1151.

#	Article	IF	CITATIONS
91	Acetylcholine-induced production of reactive oxygen species in adult rabbit ventricular myocytes is dependent on phosphatidylinositol 3- and Src-kinase activation and mitochondrial KATP channel opening. Journal of Molecular and Cellular Cardiology, 2003, 35, 653-660.	1.9	65
92	Mitochondrial KATP channels in preconditioning. Journal of Molecular and Cellular Cardiology, 2003, 35, 569-575.	1.9	74
93	P1075 opens mitochondrial KATP channels and generates reactive oxygen species resulting in cardioprotection of rabbit hearts. Journal of Molecular and Cellular Cardiology, 2003, 35, 1035-1042.	1.9	46
94	Activation of Akt is essential for acetylcholine to trigger generation of oxygen free radicals. Cardiovascular Research, 2003, 58, 196-202.	3.8	38
95	CGX-1051, A Peptide from Conus Snail Venom, Attenuates Infarction in Rabbit Hearts When Administered at Reperfusion. Journal of Cardiovascular Pharmacology, 2003, 42, 764-771.	1.9	38
96	Timing and Duration of Administration Are Crucial for Antiinfarct Effect of AMP 579 Infused at Reperfusion in Rabbit Heart. Heart Disease (Hagerstown, Md), 2003, 5, 368-371.	1.3	32
97	Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H727-H734.	3.2	61
98	Mitochondrial KATP channels: role in cardioprotection. Cardiovascular Research, 2002, 55, 429-437.	3.8	178
99	Protection From AMP 579 Can Be Added to That From Either Cariporide or Ischemic Preconditioning in Ischemic Rabbit Heart. Journal of Cardiovascular Pharmacology, 2002, 40, 510-518.	1.9	29
100	Acetylcholine leads to free radical production dependent on KATP channels, Gi proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovascular Research, 2002, 55, 544-552.	3.8	91
101	Dose-Response Relationships of the Protective and Antiprotective Effects of Acute Ethanol Exposure in Isolated Rabbit Hearts. Heart Disease (Hagerstown, Md), 2002, 4, 276-281.	1.3	10
102	ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2322-H2330.	3.2	116
103	Preconditioning one myocardial region does not neccessarily precondition the whole rabbit heart. Basic Research in Cardiology, 2002, 97, 35-39.	5.9	18
104	Xanthine oxidase contributes to preconditioning's preservation of left ventricular developed pressure in isolated rat heart: developed pressure may not be an appropriate end-point for studies of preconditioning. Basic Research in Cardiology, 2002, 97, 40-46.	5.9	46
105	Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Research in Cardiology, 2002, 97, 365-373.	5.9	133
106	The Protective and Antiâ€Protective Effects of Ethanol in a Myocardial Infarct Model. Annals of the New York Academy of Sciences, 2002, 957, 103-114.	3.8	17
107	Acute ethanol exposure fails to elicit preconditioning-like protection in in situ rabbit hearts because of its continued presence during ischemia. Journal of the American College of Cardiology, 2001, 37, 601-607.	2.8	44
108	Mitochondrial KATPChannel Opening During Index Ischemia and Following Myocardial Reperfusion in Ischemic Rat Hearts. Journal of Molecular and Cellular Cardiology, 2001, 33, 651-653.	1.9	15

#	Article	IF	CITATIONS
109	Acute Alcohol-induced Protection against Infarction in Rabbit Hearts: Differences from and Similarities to Ischemic Preconditioning. Journal of Molecular and Cellular Cardiology, 2001, 33, 2015-2022.	1.9	35
110	Ischemic Preconditioning Through Opening of Swelling-Activated Chloride Channels?. Circulation Research, 2001, 89, .	4.5	6
111	Menadione mimics the infarct-limiting effect of preconditioning in isolated rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H590-H595.	3.2	36
112	AMP 579 Reduces Contracture and Limits Infarction in Rabbit Heart by Activating Adenosine A2 Receptors. Journal of Cardiovascular Pharmacology, 2001, 38, 474-481.	1.9	55
113	Acetylcholine, Bradykinin, Opioids, and Phenylephrine, but not Adenosine, Trigger Preconditioning by Generating Free Radicals and Opening Mitochondrial K ATP Channels. Circulation Research, 2001, 89, 273-278.	4.5	285
114	Ischemic Preconditioning: Description, Mechanism, and Significance. , 2001, , 867-885.		7
115	Ischemic preconditioning. , 2000, 86, 263-275.		144
116	Anti-preconditioning. Basic Research in Cardiology, 2000, 95, 11-11.	5.9	1
117	SB 203580, an inhibitor of p38 MAPK, abolishes infarct-limiting effect of ischemic preconditioning in isolated rabbit hearts. Basic Research in Cardiology, 2000, 95, 466-471.	5.9	56
118	Do mitochondrial K ATP channels serve as triggers rather than end-effectors of ischemic preconditioning's protection?. Basic Research in Cardiology, 2000, 95, 272-274.	5.9	28
119	Favorable Remodeling Enhances Recovery of Regional Myocardial Function in the Weeks After Infarction in Ischemically Preconditioned Hearts. Circulation, 2000, 102, 579-583.	1.6	54
120	Opening of Mitochondrial K _{ATP} Channels Triggers the Preconditioned State by Generating Free Radicals. Circulation Research, 2000, 87, 460-466.	4.5	629
121	Ischemic Preconditioning Activates MAPKAPK2 in the Isolated Rabbit Heart. Circulation Research, 2000, 86, 144-151.	4.5	162
122	Exogenous Nitric Oxide Can Trigger a Preconditioned State Through a Free Radical Mechanism, But Endogenous Nitric Oxide Is Not a Trigger of Classical Ischemic Preconditioning. Journal of Molecular and Cellular Cardiology, 2000, 32, 1159-1167.	1.9	153
123	No Confirmation for a Causal Role of Volume-regulated Chloride Channels in Ischemic Preconditioning in Rabbits. Journal of Molecular and Cellular Cardiology, 2000, 32, 2279-2285.	1.9	28
124	Limitation of Infarct Size in Rabbit Hearts by the Novel Adenosine Receptor Agonist AMP 579 Administered at Reperfusion. Journal of Molecular and Cellular Cardiology, 2000, 32, 2339-2347.	1.9	61
125	Ischemic Preconditioning: From Adenosine Receptor to KATPChannel. Annual Review of Physiology, 2000, 62, 79-109.	13.1	454
126	lschemic preconditioning depends on interaction between mitochondrial K _{ATP} channels and actin cytoskeleton. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1361-H1368.	3.2	97

#	Article	IF	CITATIONS
127	Smaller infarct after preconditioning does not predict extent of early functional improvement of reperfused heart. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1754-H1761.	3.2	38
128	S-T segment voltage during sequential coronary occlusions is an unreliable marker of preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2435-H2441.	3.2	22
129	Signal Transduction in Ischemic Preconditioning: Journal of Cardiovascular Electrophysiology, 1999, 10, 741-754.	1.7	110
130	Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart. Biochemistry and Cell Biology, 1999, 77, 559-567.	2.0	40
131	Protein Kinase C- ξ is Responsible for the Protection of Preconditioning in Rabbit Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 1999, 31, 1937-1948.	1.9	235
132	Title is missing!. Molecular and Cellular Biochemistry, 1998, 186, 3-12.	3.1	125
133	Title is missing!. Molecular and Cellular Biochemistry, 1998, 186, 19-25.	3.1	19
134	Protein Tyrosine Kinase is Downstream of Protein Kinase C for Ischemic Preconditioning's Anti-infarct Effect in the Rabbit Heart. Journal of Molecular and Cellular Cardiology, 1998, 30, 383-392.	1.9	148
135	The PKC Activator PMA Preconditions Rabbit Heart in the Presence of Adenosine Receptor Blockade: Is 5′-Nucleotidase Important?. Journal of Molecular and Cellular Cardiology, 1998, 30, 2201-2211.	1.9	36
136	Fostriecin, an Inhibitor of Protein Phosphatase 2A, Limits Myocardial Infarct Size Even When Administered After Onset of Ischemia. Circulation, 1998, 98, 899-905.	1.6	73
137	Cyclosporine A limits myocardial infarct size even when administered after onset of ischemia. Cardiovascular Research, 1998, 38, 676-684.	3.8	79
138	Opioid receptor contributes to ischemic preconditioning through protein kinase C activation in rabbits. , 1998, , 3-12.		1
139	Loss of myocardial protection from ischemic preconditioning following chronic exposure to R(-)-N6-(2-phenylisopropyl)adenosine is related to defect at the adenosine A1 receptor. , 1998, , 19-25.		0
140	Oxygen Radicals Released During Ischemic Preconditioning Contribute to Cardioprotection in the Rabbit Myocardium. Journal of Molecular and Cellular Cardiology, 1997, 29, 207-216.	1.9	438
141	Protection of Ischemic Preconditioning is Dependent upon a Critical Timing Sequence of Protein Kinase C Activation. Journal of Molecular and Cellular Cardiology, 1997, 29, 991-999.	1.9	73
142	Phosphorylation of Tyrosine 182 of p38 Mitogen-activated Protein Kinase Correlates with the Protection of Preconditioning in the Rabbit Heart. Journal of Molecular and Cellular Cardiology, 1997, 29, 2383-2391.	1.9	245
143	Intravenous co-infusion of adenosine and norepinephrine preconditions the heart without adverse hemodynamic effects. Journal of Thoracic and Cardiovascular Surgery, 1997, 114, 236-242.	0.8	17
144	Signal Transduction in Ischemic Preconditioning. Advances in Experimental Medicine and Biology, 1997, 430, 39-55.	1.6	78

#	Article	IF	CITATIONS
145	Protein Kinase C - the Key-Enzyme in Ischemic Preconditioning?. Developments in Cardiovascular Medicine, 1997, , 73-91.	0.1	3
146	The Role of Protein Kinase C in Ischemic Preconditioning. Annals of the New York Academy of Sciences, 1996, 793, 177-190.	3.8	23
147	MYOCARDIAL PRECONDITIONING PROMISES TO BE A NOVEL APPROACH TO THE TREATMENT OF ISCHEMIC HEART DISEASE. Annual Review of Medicine, 1996, 47, 21-29.	12.2	65
148	Activation of Protein Kinase C is Critical to the Protection of Preconditioning. Medical Intelligence Unit, 1996, , 185-206.	0.2	10
149	Phospholipase D Plays a Role in Ischemic Preconditioning in Rabbit Heart. Circulation, 1996, 94, 1713-1718.	1.6	84
150	Do Adenosine A3 Receptors Cause Preconditioning?. Developments in Cardiovascular Medicine, 1996, , 447-458.	0.1	0
151	Role of Bradykinin in Protection of Ischemic Preconditioning in Rabbit Hearts. Circulation Research, 1995, 77, 611-621.	4.5	441
152	Chelerythrine, a highly selective protein kinase C inhibitor, blocks the antiinfarct effect of ischemic preconditioning in rabbit hearts. Cardiovascular Drugs and Therapy, 1994, 8, 881-882.	2.6	67
153	Cellular Mechanisms in Ischemic Preconditioning: The Role of Adenosine and Protein Kinase C a. Annals of the New York Academy of Sciences, 1994, 723, 82-98.	3.8	116
154	The Anti-infarct Effect of an Adenosine A1-Selective Agonist is Diminished After Prolonged Infusion as is the Cardioprotective Effect of Ischaemic Preconditioning in Rabbit Heart. Journal of Molecular and Cellular Cardiology, 1994, 26, 303-311.	1.9	78
155	Evidence that Translocation of Protein Kinase C is a Key Event During Ischemic Preconditioning of Rabbit Myocardium. Journal of Molecular and Cellular Cardiology, 1994, 26, 661-668.	1.9	298
156	The Role of Adenosine in Ischemic Preconditioning. , 1994, , 147-166.		3
157	Pretreatment with Pertussis Toxin Blocks the Protective Effects of Preconditioning: Evidence for a G-protein Mechanism. Journal of Molecular and Cellular Cardiology, 1993, 25, 311-320.	1.9	164
158	Preconditioning: state of the art myocardial protection. Cardiovascular Research, 1993, 27, 542-550.	3.8	277
159	Improved functional recovery by ischaemic preconditioning is not mediated by adenosine in the globally ischaemic isolated rat heart. Cardiovascular Research, 1993, 27, 663-668.	3.8	128
160	Pretreatment with the adenosine A1 selective agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), causes a sustained limitation of infarct size in rabbits. Cardiovascular Research, 1993, 27, 652-656.	3.8	50
161	Preconditioning protects against myocardial infarction equally well with pyruvate or glucose containing reperfusate. Journal of Molecular and Cellular Cardiology, 1992, 24, 93.	1.9	2
162	Ischemic preconditioning. Trends in Cardiovascular Medicine, 1992, 2, 170-176.	4.9	102

#	Article	IF	CITATIONS
163	Free-radical scavengers preserve wall motion in the xanthine oxidase-deficient rabbit heart. Coronary Artery Disease, 1990, 1, 383-390.	0.7	10
164	Myocardial stunning in dogs: Preconditioning effect and influence of coronary collateral flow. American Heart Journal, 1990, 120, 282-291.	2.7	47
165	Progression of myocardial infarction in a collateral flow deficient species International Heart Journal, 1989, 30, 695-708.	0.6	64
166	Extravascular Coronary Resistance. Developments in Cardiovascular Medicine, 1989, , 939-953.	0.1	4
167	Protection afforded by allopurinol in the first 24 hours of coronary occlusion is diminished after 48 hours. Free Radical Biology and Medicine, 1988, 4, 25-30.	2.9	19
168	Ischaemia-Reperfusion Injury; Current Research Status. Free Radical Research Communications, 1988, 5, 185-208.	1.8	2
169	The percentage of the ischemic risk zone infarcting following permanent coronary occlusion is independent of ischemic zone size International Heart Journal, 1988, 29, 359-366.	0.6	0
170	Determinants of infarct size during permanent occlusion of a coronary artery in the closed chest dog. Journal of the American College of Cardiology, 1987, 9, 647-654.	2.8	63
171	The Extravascular Resistance. Developments in Cardiovascular Medicine, 1987, , 59-75.	0.1	1
172	Infarct size limitation by the xanthine oxidase inhibitor, allopurinol, in closed-chest dogs with small infarcts. Cardiovascular Research, 1985, 19, 686-692.	3.8	99
173	Effects of flurbiprofen in altering the size of myocardial infarcts in dogs: Reduction or delay?. American Journal of Cardiology, 1983, 51, 884-890.	1.6	59
174	Evaluation of Drug Effects on Coronary Blood Flow and Cardiac Oxygen Consumption. , 1981, , 361-385.		0
175	An evaluation of the coronary constriction following propranolol. European Journal of Pharmacology, 1977, 46, 119-124.	3.5	9
176	Effects of Myocardial Strains on Coronary Blood Flow. Circulation Research, 1974, 34, 286-292.	4.5	88
177	Distribution of the Coronary Blood Flow across the Canine Heart Wall during Systole. Circulation Research, 1974, 34, 251-257.	4.5	152
178	Nitroglycerin and Heterogeneity of Myocardial Blood Flow REDUCED SUBENDOCARDIAL BLOOD FLOW AND VENTRICULAR CONTRACTILE FORCE. Journal of Clinical Investigation, 1973, 52, 905-911.	8.2	86
179	The Effects of Nitroglycerin on Coronary Collaterals and Myocardial Contractility. Journal of Clinical Investigation, 1973, 52, 2836-2847.	8.2	131