James G Boyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12205459/publications.pdf Version: 2024-02-01

LAMES C. BOVD

#	Article	IF	CITATIONS
1	Experimental determination of the compressive piezoresistive response of a free-standing film with application to reduced graphene oxide. Journal of Applied Physics, 2022, 131, .	2.5	2
2	Encapsulation and on-demand release of functional materials from conductive nanofibers via electrical signals. Multifunctional Materials, 2022, 5, 015003.	3.7	0
3	Two-dimensional finite element analysis of frictional sliding between a rigid cylinder and a shape memory alloy half-space. Mechanics of Materials, 2020, 143, 103306.	3.2	0
4	Multifunctional efficiency metric for structural supercapacitors. Multifunctional Materials, 2020, 3, 044002.	3.7	3
5	Fabrication, characterization and micromechanics modeling of the electrical conductivity of reduced graphene oxide/aramid nanofiber nanocomposites. Smart Materials and Structures, 2019, 28, 094001.	3.5	9
6	Interfacial Engineering of Reduced Graphene Oxide for Aramid Nanofiberâ€Enabled Structural Supercapacitors. Batteries and Supercaps, 2019, 2, 464-472.	4.7	29
7	Promising Tradeâ€Offs Between Energy Storage and Load Bearing in Carbon Nanofibers as Structural Energy Storage Devices. Advanced Functional Materials, 2019, 29, 1901425.	14.9	47
8	Micromechanics modeling of the elastic moduli of rGO/ANF nanocomposites. Acta Mechanica, 2019, 230, 265-280.	2.1	10
9	A simplified model for high-rate actuation of shape memory alloy torque tubes using induction heating. Journal of Intelligent Material Systems and Structures, 2018, 29, 1088-1101.	2.5	3
10	Processing-Mechanical Property Relationship of Hollow and Porous Carbon Fibers Fabricated by Coaxial Electrospinning. , 2018, , .		1
11	Mechanics of Emulsion Electrospun Porous Carbon Fibers as Building Blocks of Multifunctional Materials. ACS Applied Materials & Interfaces, 2018, 10, 38310-38318.	8.0	17
12	Porous fibres with encapsulated functional materials and tunable release. Journal of Microencapsulation, 2017, 34, 383-394.	2.8	5
13	Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power. ACS Nano, 2017, 11, 6682-6690.	14.6	190
14	A validated model for induction heating of shape memory alloy actuators. Smart Materials and Structures, 2016, 25, 045022.	3.5	20
15	The effect of electrodeposition process parameters on residual stress-induced self-assembly under external load. Journal of Micromechanics and Microengineering, 2014, 24, 115014.	2.6	0
16	Deflection and pull-in instability of nanoscale beams in liquid electrolytes. Journal of Colloid and Interface Science, 2011, 356, 387-394.	9.4	10
17	Effect of electrode pore geometry modeled using Nernst–Planck–Poisson-modified Stern layer model. Computational Mechanics, 2009, 43, 461-475.	4.0	15
18	Intrinsic stress, mismatch strain, and self-assembly during deposition of thin films subjected to an externally applied force. Journal of Mechanical Science and Technology, 2008, 22, 2048-2055.	1.5	1

James G Boyd

#	Article	IF	CITATIONS
19	Methodology for using residual stresses for self-assembly during deposition and etching of microstructures under external load. Journal of Micromechanics and Microengineering, 2007, 17, 452-461.	2.6	2
20	Analytical and experimental study of mismatch strain-induced microcantilever behavior during deposition. Journal of Mechanical Science and Technology, 2007, 21, 415-420.	1.5	3
21	Nanoscale electrostatic actuators in liquid electrolytes. Journal of Colloid and Interface Science, 2006, 301, 542-548.	9.4	12
22	Modeling of mechanical behavior of microcantilever due to intrinsic strain during deposition. Journal of Mechanical Science and Technology, 2006, 20, 1646-1652.	1.5	4
23	Effective properties of three-phase electro-magneto-elastic composites. International Journal of Engineering Science, 2005, 43, 790-825.	5.0	192
24	A thermodynamic field theory for anodic bonding of micro electro-mechanical systems (MEMS). International Journal of Engineering Science, 2000, 38, 135-158.	5.0	17
25	A finite-element formulation for anodic bonding. Smart Materials and Structures, 2000, 9, 737-750.	3.5	1
26	<title>Finite element analysis of electric-field-assisted bonding</title> . , 2000, , .		0