
Kaishun Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1220063/publications.pdf Version: 2024-02-01

KAISHIIN XIA

#	Article	IF	CITATIONS
1	Partial reprogramming strategy for intervertebral disc rejuvenation by activating energy switch. Aging Cell, 2022, 21, e13577.	6.7	16
2	Enhancement of nucleus pulposus repair by glycoengineered adipose-derived mesenchymal cells. Biomaterials, 2022, 283, 121463.	11.4	12
3	A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioactive Materials, 2022, 15, 103-119.	15.6	31
4	Advances in singleâ€cell sequencing and its application to musculoskeletal system research. Cell Proliferation, 2022, 55, e13161.	5.3	3
5	Estrogen/ER in anti-tumor immunity regulation to tumor cell and tumor microenvironment. Cancer Cell International, 2021, 21, 295.	4.1	16
6	A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioactive Materials, 2021, 6, 2523-2534.	15.6	68
7	Interpreting the Mechanisms by which Integrins Promote the Differentiation of Mesenchymal Stem Cells and Integrin Application Prospects. Current Stem Cell Research and Therapy, 2021, 16, 848-857.	1.3	1
8	Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell. Bioactive Materials, 2021, 6, 3568-3579.	15.6	25
9	Allogenic γδT cell and tumor cell fused vaccine for enhanced immunotherapeutic efficacy of osteosarcoma. Journal of Bone Oncology, 2020, 21, 100214.	2.4	4
10	Bioactive Elastic Scaffolds Loaded with Neural Stem Cells Promote Rapid Spinal Cord Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 6331-6343.	5.2	24
11	Cell Senescence: A Nonnegligible Cell State under Survival Stress in Pathology of Intervertebral Disc Degeneration. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	4.0	32
12	Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death and Disease, 2020, 11, 439.	6.3	56
13	An injectable recombinant human milk fat globule–epidermal growth factor 8–loaded copolymer system for spinal cord injury reduces inflammation through NF-κB and neuronal cell death. Cytotherapy, 2020, 22, 193-203.	0.7	14
14	Micro Fragmented Adipose Tissue Promotes the Matrix Synthesis Function of Nucleus Pulposus Cells and Regenerates Degenerated Intervertebral Disc in a Pig Model. Cell Transplantation, 2020, 29, 096368972090579.	2.5	6
15	Scar Tissueâ€Targeting Polymer Micelle for Spinal Cord Injury Treatment. Small, 2020, 16, e1906415.	10.0	21
16	Overexpression of the transcription factors OCT4 and KLF4 improves motor function after spinal cord injury. CNS Neuroscience and Therapeutics, 2020, 26, 940-951.	3.9	18
17	Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Current Stem Cell Research and Therapy, 2020, 15, 321-331.	1.3	32
18	Transplantation Strategies for Spinal Cord Injury Based on Microenvironment Modulation. Current Stem Cell Research and Therapy, 2020, 15, 522-530.	1.3	9

Kaishun Xia

#	Article	IF	CITATIONS
19	An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Theranostics, 2019, 9, 7016-7032.	10.0	49
20	Intradiscal Injection of Induced Pluripotent Stem Cell-Derived Nucleus Pulposus-Like Cell-Seeded Polymeric Microspheres Promotes Rat Disc Regeneration. Stem Cells International, 2019, 2019, 1-14.	2.5	30
21	Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 168.	8.6	46
22	lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Research and Therapy, 2019, 10, 344.	5.5	53
23	Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials, 2019, 192, 128-139.	11.4	96
24	Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomaterialia, 2019, 86, 300-311.	8.3	42
25	Differentiation of Pluripotent Stem Cells into Nucleus Pulposus Progenitor Cells for Intervertebral Disc Regeneration. Current Stem Cell Research and Therapy, 2019, 14, 57-64.	1.3	21
26	Long Noncoding RNA: Function and Mechanism on Differentiation of Mesenchymal Stem Cells and Embryonic Stem Cells. Current Stem Cell Research and Therapy, 2019, 14, 259-267.	1.3	7
27	The Application of Neural Stem/Progenitor Cells for Regenerative Therapy of Spinal Cord Injury. Current Stem Cell Research and Therapy, 2019, 14, 495-503.	1.3	13
28	Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomaterialia, 2018, 71, 496-509.	8.3	84
29	Cantharidin Inhibits Anti-Apoptotic Bcl-2 Family Proteins and Induces Apoptosis in Human Osteosarcoma Cell Lines MG-63 and MNNG/HOS via Mitochondria-Dependent Pathway. Medical Science Monitor, 2018, 24, 6742-6749.	1.1	16
30	Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death and Disease, 2017, 8, e3113-e3113.	6.3	115
31	A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget, 2017, 8, 39833-39848.	1.8	46