Arcady Zhukov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12197/publications.pdf

Version: 2024-02-01

598 papers 11,816 citations

59 h-index 78 g-index

618 all docs

618 docs citations

618 times ranked

2260 citing authors

#	Article	IF	CITATIONS
1	Magnetic properties of glass-coated amorphous and nanocrystalline microwires. Journal of Magnetism and Magnetic Materials, 1996, 160, 223-228.	2.3	223
2	On the stateâ€ofâ€theâ€art in magnetic microwires and expected trends for scientific and technological studies. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 493-501.	1.8	215
3	Preparation and properties of glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2002, 249, 39-45.	2.3	194
4	Giant magnetoimpedance effect in soft magnetic wires for sensor applications. Sensors and Actuators A: Physical, 1997, 59, 20-29.	4.1	179
5	Magnetoelastic anisotropy distribution in glass-coated microwires. Journal of Materials Research, 1996, 11, 2499-2505.	2.6	156
6	Thin Magnetically Soft Wires for Magnetic Microsensors. Sensors, 2009, 9, 9216-9240.	3.8	150
7	Optimization of giant magnetoimpedance in Co-rich amorphous microwires. IEEE Transactions on Magnetics, 2002, 38, 3090-3092.	2.1	132
8	The remagnetization process in thin and ultra-thin Fe-rich amorphous wires. Journal of Magnetism and Magnetic Materials, 1995, 151, 132-138.	2.3	129
9	Magnetoelastic anisotropy of amorphous microwires. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 469-471.	2.3	126
10	Microwires coated by glass: A new family of soft and hard magnetic materials. Journal of Materials Research, 2000, 15, 2107-2113.	2.6	112
11	Design of the Magnetic Properties of Fe-Rich, Glass-Coated Microwires for Technical Applications. Advanced Functional Materials, 2006, 16, 675-680.	14.9	109
12	Magnetostriction in glass-coated magnetic microwires. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 151-157.	2.3	97
13	Highly sensitive magnetometer based on the offâ€diagonal GMI effect in Coâ€rich glassâ€coated microwire. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 980-985.	1.8	94
14	Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory. Physical Review B, 2006, 74, .	3.2	93
15	Round table discussion: Present and future applications of nanocrystalline magnetic materials. Journal of Magnetism and Magnetic Materials, 2005, 294, 252-266.	2.3	90
16	Low-field hysteresis in the magnetoimpedance of amorphous microwires. Physical Review B, 2010, 81, .	3.2	90
17	Supersonic domain wall in magnetic microwires. Physical Review B, 2007, 76, .	3.2	88
18	Giant magnetoimpedance in thin amorphous wires: From manipulation of magnetic field dependence to industrial applications. Journal of Alloys and Compounds, 2014, 586, S279-S286.	5.5	83

#	Article	IF	CITATIONS
19	Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. Journal of Alloys and Compounds, 2017, 727, 887-901.	5.5	81
20	Co-based magnetic microwire and field-tunable multifunctional macro-composites. Journal of Non-Crystalline Solids, 2009, 355, 1380-1386.	3.1	77
21	Magnetic and structural properties of Ni–Mn–Ga Heusler-type microwires. Scripta Materialia, 2011, 65, 703-706.	5.2	77
22	Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires. Journal of Alloys and Compounds, 2013, 575, 73-79.	5.5	76
23	Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Research Letters, 2012, 7, 223.	5.7	75
24	Magnetocaloric effect and multifunctional properties of Ni–Mn-based Heusler alloys. Journal of Magnetism and Magnetic Materials, 2012, 324, 3530-3534.	2.3	73
25	Magnetic domain structure of wires studied by using the magneto-optical indicator film method. Applied Physics Letters, 2005, 87, 142507.	3.3	71
26	Magnetoelastic sensor based on GMI of amorphous microwire. Sensors and Actuators A: Physical, 2001, 91, 95-98.	4.1	70
27	Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment. Journal of Alloys and Compounds, 2014, 615, 610-615.	5 . 5	70
28	Tailoring of magnetic properties of glass-coated microwires by current annealing. Journal of Non-Crystalline Solids, 2001, 287, 31-36.	3.1	69
29	Glass-coated magnetic microwires for technical applications. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 216-223.	2.3	69
30	Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites. Journal of Applied Physics, 2010, 108, .	2.5	69
31	Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress- annealing. Scientific Reports, 2018, 8, 3202.	3.3	69
32	Magnetic properties of amorphous and devitrified FeSiBCuNb glass-coated microwires. Scripta Materialia, 1996, 7, 823-834.	0.5	67
33	Induced magnetic anisotropy in Co–Mn–Si–B amorphous microwires. Journal of Applied Physics, 2000, 87, 1402-1409.	2.5	67
34	Multilayer Microwires: Tailoring Magnetic Behavior by Sputtering and Electroplating. Advanced Functional Materials, 2004, 14, 266-268.	14.9	67
35	Manipulation of magnetic properties of glass-coated microwires by annealing. Journal of Magnetism and Magnetic Materials, 2015, 383, 232-236.	2.3	67
36	Ferromagnetic resonance, magnetic behaviour and structure of Fe-based glass-coated microwires. Journal of Magnetism and Magnetic Materials, 1999, 203, 238-240.	2.3	66

#	Article	IF	CITATIONS
37	Domain wall propagation in a Fe-rich glass-coated amorphous microwire. Applied Physics Letters, 2001, 78, 3106-3108.	3.3	66
38	Length effect in a Co-rich amorphous wire. Physical Review B, 2002, 65, .	3.2	66
39	Correlation between magnetic and mechanical properties of devitrified glass-coated Fe71.8Cu1Nb3.1Si15B9.1 microwires. Journal of Magnetism and Magnetic Materials, 2002, 249, 79-84.	2.3	66
40	Recent research on magnetic properties of glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2005, 294, 182-192.	2.3	66
41	Direct imaging of the magnetization reversal in microwires using all-MOKE microscopy. Review of Scientific Instruments, 2014, 85, 103702.	1.3	66
42	Effect of transverse magnetic field on domain wall propagation in magnetically bistable glass-coated amorphous microwires. Journal of Applied Physics, 2009, 106, .	2.5	65
43	Mechanisms of the ultrafast magnetization switching in bistable amorphous microwires. Journal of Applied Physics, 2009, 106, .	2.5	65
44	Domain wall propagation in micrometric wires: Limits of single domain wall regime. Journal of Applied Physics, 2012, 111, .	2.5	65
45	Engineering of magnetic softness and giant magnetoimpedance effect in Fe-rich microwires by stress-annealing. Scripta Materialia, 2018, 142, 10-14.	5.2	65
46	Magneto-impedance in glass-coated CoMnSiB amorphous microwires. IEEE Transactions on Magnetics, 1998, 34, 724-728.	2.1	64
47	Torsional stress impedance and magneto-impedance in (Co0.95Fe0.05)72.5Si12.5B15amorphous wire with helical induced anisotropy. Journal Physics D: Applied Physics, 1999, 32, 3140-3145.	2.8	64
48	Physical properties of nearly zero magnetostriction Co-rich glass-coated amorphous microwires. Journal of Materials Research, 1999, 14, 3775-3783.	2.6	64
49	Correlation of Crystalline Structure with Magnetic and Transport Properties of Glass-Coated Microwires. Crystals, 2017, 7, 41.	2.2	64
50	Magnetic properties of Fe-based glass-coated microwires. Journal of Magnetism and Magnetic Materials, 1997, 170, 323-330.	2.3	63
51	Giant magneto-impedance in heterogeneous microwires. Journal of Applied Physics, 2000, 88, 6501-6505.	2.5	63
52	Spatial structure of the head-to-head propagating domain wall in glass-covered FeSiB microwire. Journal Physics D: Applied Physics, 2010, 43, 205001.	2.8	63
53	Magnetostriction of Co–Fe-Based Amorphous Soft Magnetic Microwires. Journal of Electronic Materials, 2016, 45, 226-234.	2.2	63
54	Stress induced magnetic anisotropy and giant magnetoimpedance in Fe-rich glass-coated magnetic microwires. Journal of Applied Physics, 2003, 94, 1115-1118.	2.5	62

#	Article	IF	CITATIONS
55	Fast magnetic domain wall in magnetic microwires. Physical Review B, 2006, 74, .	3.2	62
56	Magnetic properties and GMI of soft melt-extracted magnetic amorphous fibers. Sensors and Actuators A: Physical, 2003, 106, 225-229.	4.1	61
57	Ground state magnetization distribution and characteristic width of head to head domain wall in Feâ€rich amorphous microwire. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 613-617.	1.8	61
58	Tailoring the High-Frequency Giant Magnetoimpedance Effect of Amorphous Co-Rich Microwires. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	61
59	Magnetoimpedance sensitive to dc bias current in amorphous microwires. Applied Physics Letters, 2010, 97, .	3.3	60
60	Giant magnetoimpedance in rapidly quenched materials. Journal of Alloys and Compounds, 2020, 814, 152225.	5.5	59
61	The remagnetization process of bistable amorphous alloys. Materials & Design, 1993, 14, 299-306.	5.1	57
62	Frequency dependence of coercivity in rapidly quenched amorphous materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 753-756.	5.6	57
63	Effect of tensile and torsion on GMI in amorphous wire. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 377-379.	2.3	57
64	Switching-field distribution in amorphous magnetic bistable microwires. Physical Review B, 2004, 70, .	3.2	55
65	Domain Wall Propagation in Thin Magnetic Wires. IEEE Transactions on Magnetics, 2008, 44, 3925-3930.	2.1	55
66	Advances in Giant Magnetoimpedance of Materials. Handbook of Magnetic Materials, 2015, 24, 139-236.	0.6	55
67	Effect of AC driving current on magneto-impedance effect. Sensors and Actuators A: Physical, 2000, 81, 86-90.	4.1	54
68	Possibilities of Measuring Stress and Health Monitoring in Materials Using Contact-Less Sensor Based on Magnetic Microwires. IEEE Transactions on Magnetics, 2013, 49, 128-131.	2.1	53
69	Temperature dependence of the switching field and its distribution function in Fe-based bistable microwires. Applied Physics Letters, 2003, 83, 2620-2622.	3.3	52
70	Asymmetric torsion stress giant magnetoimpedance in nearly zero magnetostrictive amorphous wires. Journal of Applied Physics, 2000, 87, 4813-4815.	2.5	51
71	Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Scientific Reports, 2016, 6, 39300.	3.3	50
72	Magnetostriction investigation of soft magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 363-367.	1.8	50

#	Article	IF	CITATIONS
73	Local nucleation fields of Fe-rich microwires and their dependence on applied stresses. Physica B: Condensed Matter, 2008, 403, 379-381.	2.7	49
74	Novel magnetic microwires-embedded composites for structural health monitoring applications. Journal of Applied Physics, 2010, 107 , .	2.5	49
75	Domain wall propagation in Fe-rich amorphous microwires. Physica B: Condensed Matter, 2012, 407, 1442-1445.	2.7	49
76	Soft magnetic microwires for sensor applications. Journal of Magnetism and Magnetic Materials, 2020, 498, 166180.	2.3	49
77	Tailoring of magnetic anisotropy of Fe-rich microwires by stress induced anisotropy. Physica B: Condensed Matter, 2006, 384, 1-4.	2.7	48
78	The stress dependence of the switching field in glass-coated amorphous microwires. Journal Physics D: Applied Physics, 1998, 31, 3040-3045.	2.8	47
79	Domain walls and magnetization reversal process in soft magnetic nanowires and nanotubes. Journal of Magnetism and Magnetic Materials, 2007, 316, 255-261.	2.3	47
80	Magnetic field effects in artificial dielectrics with arrays of magnetic wires at microwaves. Journal of Applied Physics, 2011, 109, .	2.5	46
81	Glass-coated ferromagnetic microwire-induced magnetic hyperthermia for in vitro cancer cell treatment. Materials Science and Engineering C, 2020, 106, 110261.	7.3	46
82	Engineering of magnetic properties of Co-rich microwires by joule heating. Intermetallics, 2019, 105, 92-98.	3.9	45
83	Giant magneto-impedance effect in CoMnSiB amorphous microwires. Journal of Magnetism and Magnetic Materials, 2001, 234, 359-365.	2.3	44
84	An Embedded Stress Sensor for Concrete SHM Based on Amorphous Ferromagnetic Microwires. Sensors, 2014, 14, 19963-19978.	3.8	44
85	Smart composites with embedded magnetic microwire inclusions allowing non-contact stresses and temperature monitoring. Composites Part A: Applied Science and Manufacturing, 2019, 120, 12-20.	7.6	44
86	Grading the magnetic anisotropy and engineering the domain wall dynamics in Fe-rich microwires by stress-annealing. Acta Materialia, 2018, 155, 279-285.	7.9	43
87	Interaction between Fe-rich ferromagnetic glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2002, 249, 99-103.	2.3	41
88	Switching field fluctuations in a glass-coated Fe-rich amorphous microwire. Journal of Magnetism and Magnetic Materials, 2002, 249, 131-135.	2.3	41
89	Tunable and Self-Sensing Microwave Composite Materials Incorporating Ferromagnetic Microwires. Advances in Science and Technology, 0, , .	0.2	41
90	Recent advances in studies of magnetically soft amorphous microwires. Journal of Magnetism and Magnetic Materials, 2009, 321, 822-825.	2.3	41

#	Article	IF	CITATIONS
91	Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni–Mn–In based Heusler alloys. Applied Physics Letters, 2011, 98, 131911.	3.3	41
92	Fe-based ferromagnetic microwires enabled meta-composites. Applied Physics Letters, 2013, 103, .	3.3	41
93	Effect of stress annealing on magnetic properties and GMI effect of Co- and Fe-rich microwires. Journal of Alloys and Compounds, 2017, 707, 189-194.	5.5	41
94	Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.4+xB9.1 (0â‰æâ‰æ.6) microwires. Scripta Materialia, 1999, 1 1319-1327.	¹ 'o.5	40
95	Glass-coated Co-rich amorphous microwires with enhanced permeability. Sensors and Actuators A: Physical, 2000, 81, 227-231.	4.1	40
96	Magnetoresistance in thin wires with granular structure. Journal of Magnetism and Magnetic Materials, 2005, 294, 165-173.	2.3	40
97	Skin-effect and circumferential permeability in micro-wires utilized in GMI-sensors. Sensors and Actuators A: Physical, 2005, 119, 384-389.	4.1	39
98	Correlation of surface domain structure and magneto-impedance in amorphous microwires. Journal of Applied Physics, 2011, 109, 113924.	2.5	39
99	Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors. Sensors, 2020, 20, 1558.	3.8	39
100	The effect of mechanical stress on Ni63.8Mn11.1Ga25.1 microwire crystalline structure and properties. Intermetallics, 2013, 43, 60-64.	3.9	37
101	Development of Magnetic Microwires for Magnetic Sensor Applications. Sensors, 2019, 19, 4767.	3.8	37
102	Determination of the normal and anomalous hall effect coefficients in ferromagnetic Ni50Mn35ln15 â^' x Si x Heusler alloys at the martensitic transformation. Journal of Experimental and Theoretical Physics, 2012, 115, 805-814.	0.9	36
103	AC-current-induced magnetization switching in amorphous microwires. Frontiers of Physics, 2018, 13, 1.	5.0	36
104	Cylindrical micro and nanowires: Fabrication, properties and applications. Journal of Magnetism and Magnetic Materials, 2020, 513, 167074.	2.3	36
105	Magnetization switching in ferromagnetic microwires. Physical Review B, 2010, 82, .	3.2	35
106	Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. Journal of Applied Physics, 2014, 115, .	2.5	35
107	Engineering of magnetic properties and GMI effect in Co-rich amorphous microwires. Journal of Alloys and Compounds, 2016, 664, 235-241.	5.5	35
108	Magnetoelastic sensor of liquid level based on magnetoelastic properties of Co-rich microwires. Sensors and Actuators A: Physical, 2000, 81, 129-133.	4.1	33

#	Article	IF	CITATIONS
109	Review of Domain Wall Dynamics Engineering in Magnetic Microwires. Nanomaterials, 2020, 10, 2407.	4.1	33
110	Effect of tensile stresses on GMI of Co-rich amorphous microwires. IEEE Transactions on Magnetics, 2005, 41, 3688-3690.	2.1	32
111	Magnetocaloric effect in nanogranular glass coated microwires. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1378-1381.	1.8	32
112	Magnetic and transport properties of granular and Heusler-type glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2012, 324, 3558-3562.	2.3	32
113	Effect of composite origin on magnetic properties of glass-coated microwires. Intermetallics, 2014, 44, 88-93.	3.9	32
114	Temperature Dependences of the Nuclear Quadrupole Resonance Spectra of As ⁷⁵ in KH ₂ 4, RbH ₂ AsO ₄ , CsH ₂ AsO ₄ , AsO ₄ , NH ₄ H ₂ AsO ₄ , and of their Deuterated Analogues. Physica Status Solidi (B): Basic Research, 1968, 27, K129.	1.5	31
115	Asymmetric torsion giant impedance in nearly-zero magnetostrictive amorphous wires with induced helical anisotropy. Journal Physics D: Applied Physics, 2001, 34, L31-L34.	2.8	31
116	Magnetic Properties and MCE in Heusler-Type Glass-Coated Microwires. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1415-1419.	1.8	31
117	Tailoring of domain wall dynamics in amorphous microwires by annealing. Journal of Applied Physics, 2013, 113, .	2.5	31
118	Effect of annealing on magnetic properties and magnetostriction coefficient of Fe–Ni-based amorphous microwires. Journal of Alloys and Compounds, 2015, 651, 718-723.	5. 5	31
119	Advanced functional magnetic microwires for technological applications. Journal Physics D: Applied Physics, 2022, 55, 253003.	2.8	31
120	Microwave metamaterials with ferromagnetic microwires. Applied Physics A: Materials Science and Processing, 2011, 103, 653-657.	2.3	30
121	Magnetoelastic contribution in domain wall dynamics of amorphous microwires. Physica B: Condensed Matter, 2012, 407, 1450-1454.	2.7	30
122	Fast magnetization switching in Fe-rich amorphous microwires: Effect of magnetoelastic anisotropy and role of defects. Journal of Alloys and Compounds, 2014, 586, S287-S290.	5.5	30
123	Metacomposite characteristics and their influential factors of polymer composites containing orthogonal ferromagnetic microwire arrays. Journal of Applied Physics, 2014, 115, 173909.	2.5	29
124	Magnetic and structural properties of glass-coated Heusler-type microwires exhibiting martensitic transformation. Scientific Reports, 2018, 8, 621.	3.3	29
125	Engineering of magnetic properties and magnetoimpedance effect in Fe-rich microwires by reversible and irreversible stress-annealing anisotropy. Journal of Alloys and Compounds, 2021, 855, 157460.	5.5	29
126	Magnetization reversal of Co-rich wires in circular magnetic field. Journal of Applied Physics, 2002, 91, 537.	2.5	28

#	Article	IF	CITATIONS
127	Effects of wire properties on the field-tunable behaviour of continuous-microwire composites. Sensors and Actuators A: Physical, 2012, 178, 118-125.	4.1	28
128	Studies of Interfacial Layer and Its Effect on Magnetic Properties of Glass-Coated Microwires. Journal of Electronic Materials, 2016, 45, 2381-2387.	2.2	28
129	Engineering of Magnetic Softness and Domain Wall Dynamics of Fe-rich Amorphous Microwires by Stress- induced Magnetic Anisotropy. Scientific Reports, 2019, 9, 12427.	3.3	28
130	Manipulation of domain wall dynamics in amorphous microwires through domain wall collision. Journal of Applied Physics, 2013, 114, .	2.5	27
131	Inverse magnetocaloric effects in metamagnetic Ni-Mn-In-based alloys in high magnetic fields. Journal of Alloys and Compounds, 2017, 695, 3348-3352.	5 . 5	27
132	The effect of annealing on magnetic properties of "Thick―microwires. Journal of Alloys and Compounds, 2020, 831, 150992.	5. 5	27
133	Studies of magnetic properties of thin microwires with low Curie temperature. Journal of Magnetism and Magnetic Materials, 2006, 300, 16-23.	2.3	26
134	Magnetoimpedance hysteresis in amorphous microwires induced by core–shell interaction. Applied Physics Letters, 2014, 105, .	3.3	26
135	Non-contact method for stress monitoring based on stress dependence of magnetic properties of Fe-based microwires. Journal of Alloys and Compounds, 2018, 748, 199-205.	5 . 5	26
136	Temperature dependence of magnetization reversal in magnetostrictive glass-coated amorphous microwires. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 1145-1148.	5.6	25
137	Coercivity and induced magnetic anisotropy by stress and/or field annealing in Fe- and Co- based (Finemet-type) amorphous alloys. Journal of Magnetism and Magnetic Materials, 2005, 294, 245-251.	2.3	25
138	The defects influence on domain wall propagation in bistable glass-coated microwires. Physica B: Condensed Matter, 2012, 407, 1446-1449.	2.7	25
139	Effect of Nanocrystallization on Magnetic Properties and GMI Effect of Fe-rich Microwires. Journal of Electronic Materials, 2014, 43, 4540-4547.	2.2	25
140	Microwires enabled metacomposites towards microwave applications. Journal of Magnetism and Magnetic Materials, 2016, 416, 299-308.	2.3	25
141	Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications. Scientific Reports, 2016, 6, 36180.	3.3	25
142	Fast Magnetization Switching in Thin Wires: Magnetoelastic and Defects Contributions. Sensor Letters, 2013, 11, 170-176.	0.4	25
143	Effect of stress applied on the magnetization profile of Fe–Si–B amorphous wire. Journal of Applied Physics, 2003, 93, 7208-7210.	2.5	24
144	Vortex-type domain structure in Co-rich amorphous wires. Journal of Applied Physics, 2004, 95, 2933-2935.	2.5	24

#	Article	IF	Citations
145	Offâ€diagonal magnetoâ€impedance in amorphous microwires with diameter 6–10 μm and application to linear magnetic sensors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1779-1782.	1.8	24
146	Magnetic ordering in arrays of one-dimensional nanoparticle chains. Journal Physics D: Applied Physics, 2009, 42, 215003.	2.8	24
147	Domain wall dynamics during the devitrification of Fe73.5CuNb3Si11.5B11magnetic microwires. Physical Review B, 2010, 82, .	3.2	24
148	Tailoring of Magnetic Properties of Magnetostatically-Coupled Glass-Covered Magnetic Microwires. Journal of Superconductivity and Novel Magnetism, 2011, 24, 541-547.	1.8	24
149	On different tag reader architectures for bistable microwires. Sensors and Actuators A: Physical, 2011, 166, 133-140.	4.1	24
150	Engineering of Magnetic Softness and Magnetoimpedance in Fe-Rich Microwires by Nanocrystallization. Jom, 2016, 68, 1563-1571.	1.9	24
151	Route of magnetoimpedance and domain walls dynamics optimization in Co-based microwires. Journal of Alloys and Compounds, 2020, 830, 154576.	5.5	24
152	DSC studies of finemet-type glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2002, 249, 108-112.	2.3	23
153	Development of thin microwires with low Curie temperature for temperature sensors applications. Sensors and Actuators B: Chemical, 2007, 126, 318-323.	7.8	23
154	Influence of the defects on magnetic properties of glass-coated microwires. Journal of Applied Physics, 2014, 115, .	2.5	23
155	Sensitive magnetoelastic properties of amorphous ribbon for magnetoelastic sensors. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 743-745.	2.3	22
156	Development of ultraâ€thin glassâ€coated amorphous microwires for HF magnetic sensor applications. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1367-1372.	1.8	22
157	Direct observation of giant Barkhausen jumps in magnetic microwires. Applied Physics Letters, 2010, 97,	3.3	22
158	The comparison of direct and indirect methods for determining the magnetocaloric parameters in the Heusler alloy Ni50Mn34.8In14.2B. Applied Physics Letters, 2012, 100, 192402.	3.3	22
159	Continuous control of a resistance in Co-rich amorphous ferromagnetic microwires during DC Joule heating. Intermetallics, 2018, 99, 39-43.	3.9	22
160	Stress dependence of the magnetic properties of glass-coated amorphous microwires. Journal of Alloys and Compounds, 2019, 789, 201-208.	5.5	22
161	Studies of the magnetostriction of as-prepared and annealed glass-coated Co-rich amorphous microwires by SAMR method. Journal Physics D: Applied Physics, 2001, 34, L113-L116.	2.8	21
162	Circular magnetic bistability induced by tensile stress in glass-covered amorphous microwires. Applied Physics Letters, 2003, 82, 610-612.	3.3	21

#	Article	IF	Citations
163	Magnetocaloric effect in dipolar chains of magnetic nanoparticles with collinear anisotropy axes. Physical Review B, 2009, 80, .	3.2	21
164	Stress tunable properties of ferromagnetic microwires and their multifunctional composites. Journal of Applied Physics, 2011, 109, 07A310.	2.5	21
165	Electronic Surveillance and Security Applications of Magnetic Microwires. Chemosensors, 2021, 9, 100.	3.6	21
166	Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JETP Letters, 2010, 92, 666-670.	1.4	20
167	Evaluation of the saturation magnetostriction in nearly zero magnetostrictive glass-coated amorphous microwires. Journal of Applied Physics, 2000, 87, 5950-5952.	2.5	19
168	Circular magnetic bistability in Co-rich amorphous microwires. Journal Physics D: Applied Physics, 2003, 36, 419-422.	2.8	19
169	Studies of magnetic properties and giant magnetoimpedance effect in ultrathin magnetically soft amorphous microwires. Journal of Applied Physics, 2008, 103, 07E714.	2.5	19
170	Kerr-effect based Sixtus-Tonks experiment for measuring the single domain wall dynamics. Journal of Applied Physics, 2008, 103, 07E707.	2.5	19
171	Manipulating the magnetoimpedance by dc bias current in amorphous microwire. Journal of Magnetism and Magnetic Materials, 2012, 324, 4078-4083.	2.3	19
172	Magneto-resistance, magneto-reactance, and magneto-impedance effects in single and multi-wire systems. Journal of Alloys and Compounds, 2013, 549, 295-302.	5 . 5	19
173	Magnetic properties of Ni-Mn-In-Co Heusler-type glass-coated microwires. Journal of Applied Physics, 2014, 115, .	2.5	19
174	Effect of nanocrystallization on giant magnetoimpedance effect of Fe-based microwires. Intermetallics, 2014, 51, 59-63.	3.9	19
175	Investigation of the magnetostriction coefficient of amorphous ferromagnetic glass coated microwires. Journal of Applied Physics, 2014, 116, .	2.5	19
176	Studies of structural and magnetic properties of glass-coated nanocrystalline Fe79Hf7B12Si2 microwires. Journal of Alloys and Compounds, 2006, 423, 116-119.	5.5	18
177	Domainâ€wall dynamics in bistable magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 608-612.	1.8	18
178	Expanding the longitudinal magnetoimpedance sensor range by direct bias current. Journal of Applied Physics, 2013, 113, .	2.5	18
179	Correlation between thermal and magnetic properties of glass coated microwires. Journal of Alloys and Compounds, 2014, 615, S242-S246.	5.5	18
180	Engineering of domain wall dynamics in amorphous microwires byÂannealing. Journal of Alloys and Compounds, 2017, 707, 35-40.	5 . 5	18

#	Article	IF	CITATIONS
181	Tailoring of magnetic properties of Heusler-type glass-coated microwires by annealing. Journal of Alloys and Compounds, 2018, 732, 561-566.	5.5	18
182	Spiral magnetic domain structure in cylindrically-shaped microwires. Scientific Reports, 2018, 8, 15090.	3.3	18
183	Magnetic Microwires with Unique Combination of Magnetic Properties Suitable for Various Magnetic Sensor Applications. Sensors, 2020, 20, 7203.	3.8	18
184	Martensitic transformation, magnetic and magnetocaloric properties of Ni–Mn–Fe–Sn Heusler ribbons. Journal of Materials Research and Technology, 2021, 12, 1091-1103.	5.8	18
185	Development of Magnetically Soft Amorphous Microwires for Technological Applications. Chemosensors, 2022, 10, 26.	3.6	18
186	High coercivity of partially devitrified glass-coated finemet microwires: effect of geometry and thermal treatment. IEEE Transactions on Magnetics, 2000, 36, 3015-3017.	2.1	17
187	Magnetostriction of glass-coated Co-rich amorphous microwires and its dependence on current annealing. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 94-96.	2.3	17
188	Domain-wall dynamics in glass-coated magnetic microwires. Journal of Magnetism and Magnetic Materials, 2007, 316, 337-339.	2.3	17
189	Relation between surface magnetization reversal and magnetoimpedance in Co-rich amorphous microwires. Journal of Applied Physics, 2008, 103, 07E742.	2.5	17
190	Phase Transitions, Magnetotransport and Magnetocaloric Effects in a New Family of Quaternary Ni–Mn–In– <i>Z</i> Heusler Alloys. Journal of Nanoscience and Nanotechnology, 2012, 12, 7426-7431.	0.9	17
191	Tuning of Magnetic Properties and GMI Effect of Co-Based Amorphous Microwires by Annealing. Journal of Electronic Materials, 2014, 43, 4532-4539.	2.2	17
192	Effect of stress-induced anisotropy on high frequency magnetoimpedance effect of Fe and Co-rich glass-coated microwires. Journal of Alloys and Compounds, 2018, 735, 1818-1825.	5.5	17
193	Magneto-optical investigation of the magnetization reversal in Co-rich wires. Physica B: Condensed Matter, 2001, 299, 314-321.	2.7	16
194	Magneto-optical investigation of magnetization reversal in nearly zero magnetostrictive Co-rich wire and microwire. Journal of Magnetism and Magnetic Materials, 2002, 249, 27-33.	2.3	16
195	Asymmetrical magneto-impedance effect in Fe-rich amorphous wires. Journal of Applied Physics, 2004, 95, 6756-6758.	2.5	16
196	Fabrication and magnetic properties of Cu50(Fe69Si10B16C5)50 thin microwires. Journal of Non-Crystalline Solids, 2007, 353, 922-924.	3.1	16
197	Internal stress influence on FMR in amorphous glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2007, 316, e890-e892.	2.3	16
198	Influence of the magnetoelastic anisotropy on the domain wall dynamics in bistable amorphous wires. Journal of Physics Condensed Matter, 2012, 24, 296003.	1.8	16

#	Article	IF	CITATIONS
199	The Magnetocaloric Effect of Heusler Microwires in Low and High Magnetic Fields. IEEE Transactions on Magnetics, 2013, 49, 54-57.	2.1	16
200	From Manipulation of Giant Magnetoimpedance in Thin Wires to Industrial Applications. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1045-1054.	1.8	16
201	Magnetoimpedance dependence on width in Co66.5Fe3.5Si12.0B18.0 amorphous alloy ribbons. Journal of Applied Physics, 2013, 113, 053905.	2.5	16
202	Magnetic Properties of Heusler-Type Microwires and Thin Films. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	16
203	Control of the domain wall motion in cylindrical magnetic wires. Applied Physics Letters, 2016, 109, .	3.3	16
204	Excellent magnetic properties of (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 ribbons and microwires. Intermetallics, 2020, 117, 106660.	3.9	16
205	Effect of annealing under torsion stress on the field dependence of the impedance tensor in amorphous wires. Journal of Magnetism and Magnetic Materials, 2002, 249, 324-329.	2.3	15
206	Magneto-optical investigation of high-frequency electric current influence on surface magnetization reversal in Co-rich amorphous microwires. Journal of Applied Physics, 2005, 97, 073912.	2.5	15
207	Domain wall propagation in Fe-rich microwires. Physica B: Condensed Matter, 2008, 403, 382-385.	2.7	15
208	Development of Thin Microwires With Enhanced Magnetic Softness and GMI. IEEE Transactions on Magnetics, 2008, 44, 3958-3961.	2.1	15
209	Smart Composites With Short Ferromagnetic Microwires for Microwave Applications. IEEE Transactions on Magnetics, 2011, 47, 4481-4484.	2.1	15
210	Magnetorefractive effect in manganites with a colossal magnetoresistance in the visible spectral region. Journal of Experimental and Theoretical Physics, 2012, 114, 141-149.	0.9	15
211	High frequency magnetoimpedance response of stress annealed Co66.3Fe3.7Si12.0B18.0 amorphous alloy ribbons. Journal of Applied Physics, 2013, 114, .	2.5	15
212	Giant magnetoimpedance effect and domain wall dynamics in Co-rich amorphous microwires. Journal of Applied Physics, 2015, 117, .	2.5	15
213	Effect of annealing on magnetic properties of nanocrystalline Hitperm-type glass-coated microwires. Journal of Alloys and Compounds, 2016, 660, 297-303.	5.5	15
214	Magnetic Properties of NdFeB Alloys Obtained by Gas Atomization Technique. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	15
215	Influence of Nanocrystalline Structure on the Magnetic Properties of Wires and Microwires. Textures and Microstructures, 1999, 32, 245-267.	0.2	14
216	Glass coated microwires with enhanced coercivity. Journal of Magnetism and Magnetic Materials, 1999, 203, 54-56.	2.3	14

#	Article	IF	Citations
217	Structural study of glass coated Cu-based microwires. Physica B: Condensed Matter, 2001, 299, 242-250.	2.7	14
218	Dynamics of interacting wires. Journal of Magnetism and Magnetic Materials, 2002, 249, 9-15.	2.3	14
219	Measurements of stray magnetic fields of amorphous microwires using scanning microscope based on superconducting quantum interference device. Journal of Magnetism and Magnetic Materials, 2007, 316, 188-191.	2.3	14
220	Temperature Dependence of the Magnetization Reversal Process and Domain Structure in Fe $_{77.5}$ - $mx}$ Ni $_{mx}$ Si $_{7.5}$ B $_{15}$ Magnetic Microwires. IEEE Transactions on Magnetics, 2008, 44, 3946-3949.	2.1	14
221	Magnetostatic interaction of glass-coated magnetic microwires. Journal of Applied Physics, 2010, 108, 016103.	2.5	14
222	Internal stress induced texture in Ni-Mn-Ga based glass-covered microwires. Journal of Applied Physics, 2013, 114, 123914.	2.5	14
223	Circular domains nucleation in magnetic microwires. Applied Physics Letters, 2013, 102, .	3.3	14
224	Optimization of Soft Magnetic Properties in Nanocrystalline Fe-Rich Glass-Coated Microwires. Jom, 2015, 67, 2108-2116.	1.9	14
225	Temperature dependence of the offâ€diagonal magnetoimpedance in sensor configuration utilizing Coâ€rich amorphous wires. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 372-376.	1.8	14
226	Magnetic, Magnetocaloric, Magnetotransport, and Magneto-optical Properties of Ni–Mn–In-Based Heusler Alloys: Bulk, Ribbons, and Microwires. Springer Series in Materials Science, 2016, , 41-82.	0.6	14
227	First-order martensitic transformation in Heusler-type glass-coated microwires. Applied Physics Letters, 2017, 111, 242403.	3.3	14
228	Routes for optimization of giant magnetoimpedance effect in magnetic microwires. IEEE Instrumentation and Measurement Magazine, 2020, 23, 56-63.	1.6	14
229	Controlling the domain wall dynamics in Fe-, Ni- and Co-based magnetic microwires. Journal of Alloys and Compounds, 2020, 834, 155170.	5.5	14
230	Effect of Joule heating on giant magnetoimpedance effect and magnetic properties of Co-rich microwires. Journal of Alloys and Compounds, 2021, 883, 160778.	5. 5	14
231	Axial and transverse magnetization processes of glass-coated amorphous microwires. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 143-144.	2.3	13
232	Curie temperature behaviour on annealing of Finemet type amorphous alloys. Journal of Non-Crystalline Solids, 2003, 329, 63-66.	3.1	13
233	Influence of AC Magnetic Field Amplitude on the Surface Magnetoimpedance Tensor in Amorphous Wire With Helical Magnetic Anisotropy. IEEE Transactions on Magnetics, 2004, 40, 3368-3377.	2.1	13
234	Effect of stress and/or field annealing on the magnetic behavior of the (Co77Si13.5B9.5)90Fe7Nb3 amorphous alloy. Journal of Applied Physics, 2005, 97, 034911.	2.5	13

#	Article	IF	Citations
235	Giant magnetoresistance of granular microwires: Spin-dependent scattering in integranular spacers. Physics of the Solid State, 2011, 53, 320-322.	0.6	13
236	Tunable effective permittivity of composites based onÂferromagnetic microwires with high magneto-impedance effect. Applied Physics A: Materials Science and Processing, 2011, 103, 693-697.	2.3	13
237	Surface magnetization reversal and magnetic domain structure in amorphous microwires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 502-508.	1.8	13
238	Magnetic properties of sub-micrometric Fe-rich wires. Thin Solid Films, 2013, 543, 130-132.	1.8	13
239	Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2016, 406, 15-21.	2.3	13
240	Engineering of domain wall propagation in magnetic microwires with graded magnetic anisotropy. Applied Materials Today, 2022, 26, 101263.	4.3	13
241	Matteucci effect in glass coated microwires. IEEE Transactions on Magnetics, 1999, 35, 3382-3384.	2.1	12
242	Frequency dependence of GMI effect in nanocrystalline Fe86Zr7B6Cu1 ribbons. Journal of Magnetism and Magnetic Materials, 1999, 203, 292-294.	2.3	12
243	Effect of Applied Mechanical Stressses on the Impedance Response in Amorphous Microwires with Vanishing Magnetostriction. Physica Status Solidi A, 2002, 189, 599-608.	1.7	12
244	Stress and/or Field Induced Magnetic Anisotropy in the Amorphous Fe73.5Cu1Nb3Si15.5B7 Alloy: Influence on the Coercivity, Saturation Magnetostriction and Magneto-Impedance Response. Physica Status Solidi A, 2002, 194, 291-303.	1.7	12
245	Surface and Bulk Magnetic Hysteresis Loops of Co-Rich Glass Covered Microwires. IEEE Transactions on Magnetics, 2006, 42, 3889-3892.	2.1	12
246	Magnetostatic properties of Coâ€rich amorphous microwires: theory and experiment. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1800-1804.	1.8	12
247	Fast domain wall dynamics in amorphous glass-coated microwires. Journal of Magnetism and Magnetic Materials, 2008, 320, 2534-2537.	2.3	12
248	Nucleation field of a soft magnetic nanotube with uniaxial anisotropy. Journal of Applied Physics, 2008, 104, .	2.5	12
249	Kerr Microscopy Study of Magnetic Domain Structure Changes in Amorphous Microwires. IEEE Transactions on Magnetics, 2009, 45, 4279-4281.	2.1	12
250	Investigation of the properties of Co-rich amorphous ferromagnetic microwires by means of small angle magnetization rotation method. Journal of Magnetism and Magnetic Materials, 2015, 387, 53-57.	2.3	12
251	Optimization of Magnetic Properties and Giant Magnetoimpedance Effect in Nanocrystalline Microwires. Journal of Superconductivity and Novel Magnetism, 2015, 28, 813-822.	1.8	12
252	Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Advances, 2016, 6, 095309.	1.3	12

#	Article	IF	Citations
253	Preparation and Characterization of Fe-Pt and Fe-Pt-(B, Si) Microwires. IEEE Magnetics Letters, 2016, 7, 1-4.	1.1	12
254	Heating influence on magnetic structure in Co and Fe rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2016, 400, 356-360.	2.3	12
255	Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires. Journal of Magnetism and Magnetic Materials, 2017, 433, 278-284.	2.3	12
256	Control of reversible magnetization switching by pulsed circular magnetic field in glass-coated amorphous microwires. Applied Physics Letters, 2018, 112, .	3.3	12
257	Monocrystalline Heusler Co2FeSi alloy glass-coated microwires: Fabrication and magneto-structural characterization. Journal of Magnetism and Magnetic Materials, 2018, 453, 96-100.	2.3	12
258	Soft Magnetic Amorphous Microwires for Stress and Temperature Sensory Applications. Sensors, 2019, 19, 5089.	3.8	12
259	Stress-induced magnetic anisotropy enabling engineering of magnetic softness of Fe-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2020, 510, 166939.	2.3	12
260	Tailoring of Magnetic Softness and Magnetoimpedance of Coâ€Rich Microwires by Stress Annealing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100130.	1.8	12
261	Effect of Interaction on Giant Magnetoimpedance Effect in a System of Few Thin Wires. Sensor Letters, 2007, 5, 10-12.	0.4	12
262	Glass-Coated Fe–Ni–Cu Microwires with High Coercivity. Physica Status Solidi A, 1997, 162, R5-R6.	1.7	11
263	Magnetoelastic sensor for signature identification based on mechanomagnetic effect in amorphous wires. European Physical Journal Special Topics, 1998, 08, Pr2-763-Pr2-766.	0.2	11
264	Giant magnetoimpedance of glass-covered amorphous microwires of Co–Mn–Si–B and Co–Si–B. Journal of Applied Physics, 1999, 85, 4445-4447.	2.5	11
265	Surface and volume hysteresis loops of Fe-rich glass-coated microwires. Journal of Non-Crystalline Solids, 2001, 287, 374-379.	3.1	11
266	Kerr Effect as Method of Investigation of Magnetization Reversal in Amorphous Wires. Physica Status Solidi A, 2002, 189, 625-629.	1.7	11
267	Length effect in a negative magnetostrictive Co–Si–B amorphous wire with rectangular hysteresis loop. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 182-184.	2.3	11
268	Temperature dependence of remagnetization process in bistable magnetic microwires. Journal of Non-Crystalline Solids, 2003, 329, 123-130.	3.1	11
269	Transformation of surface domain structure in Co-rich amorphous wires. Sensors and Actuators B: Chemical, 2007, 126, 235-239.	7.8	11
270	Influence of torsion and tensile stress on magnetoimpedance effect in Fe-rich amorphous microwires at high frequencies. Journal of Magnetism and Magnetic Materials, 2007, 316, e896-e899.	2.3	11

#	Article	IF	Citations
271	Symmetry breaking effect of dc bias current on magnetoimpedance in microwire with helical anisotropy: Application to magnetic sensors. Journal of Applied Physics, 2011, 110, .	2.5	11
272	Magnetocaloric effect in single crystal <i>Nd</i> Co7. Journal of Applied Physics, 2011, 109, .	2.5	11
273	Evaluation of use of magnetically bistable microwires for magnetic labels. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 526-529.	1.8	11
274	Magnetic properties and domain wall propagation in FeNiSiB glass-coated microwires. Journal of Applied Physics, 2014, 115, 17A309.	2.5	11
275	Experimental demonstration of basic mechanisms of magnetization reversal in magnetic microwires. Physica B: Condensed Matter, 2014, 435, 125-128.	2.7	11
276	Magnetic Properties of Heusler-Type NiMnGa Glass-Coated Microwires. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	11
277	Studies of High-Frequency Giant Magnetoimpedance Effect in Co-Rich Amorphous Microwires. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	11
278	Engineering of the GMR Effect in CuCo Microwires with Granular Structure. Journal of Electronic Materials, 2016, 45, 2401-2406.	2.2	11
279	Surface magnetic properties and giant magnetoimpedance effect in Co-based amorphous ribbons. Intermetallics, 2017, 86, 15-19.	3.9	11
280	Basic study of magnetic microwires for sensor applications: Variety of magnetic structures. Journal of Magnetism and Magnetic Materials, 2017, 422, 299-303.	2.3	11
281	Optimization of high frequency magnetoimpedance effect of Fe-rich microwires by stress-annealing. Intermetallics, 2018, 94, 92-98.	3.9	11
282	Magnetic hardening of Fe-Pt and Fe-Pt- M (M=B, Si) microwires. Journal of Alloys and Compounds, 2018, 735, 1071-1078.	5.5	11
283	Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness and GMI Effect of Amorphous Microwires. Applied Sciences (Switzerland), 2020, 10, 981.	2.5	11
284	Magnetic Properties and Domain Wall Propagation in Micrometric Amorphous Microwires. Sensor Letters, 2013, 11, 187-190.	0.4	11
285	Magnetic and structural features of glass-coated Cu-based (Co,Fe,Ni,Mn–Cu) alloy microwires. Journal of Magnetism and Magnetic Materials, 2000, 221, 196-206.	2.3	10
286	Sensitive magnetoelastic properties of glass-coated CoMnSiB amorphous microwires for magnetoelastic sensors. Journal of Magnetism and Magnetic Materials, 2002, 249, 402-406.	2.3	10
287	Effect of applied stress on remagnetization and magnetization profile of Co–Si–B amorphous wire. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 189-191.	2.3	10
288	Magnetization reversal and magnetic domain structure in glass-covered Co-rich microwires in presence of tensile stress. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E499-E500.	2.3	10

#	Article	IF	CITATIONS
289	Distribution of switching field fluctuations in Fe-rich wires under tensile stress. Applied Physics Letters, 2006, 88, 152507.	3.3	10
290	Thermal activation over a complex energy barrier in bistable microwires. Physical Review B, 2006, 73, .	3.2	10
291	Applications of amorphous microwires in sensing technologies. International Journal of Applied Electromagnetics and Mechanics, 2007, 25, 441-446.	0.6	10
292	GMI effect in ultra-thin glass-coated Co-rich amorphous wires. Sensors and Actuators B: Chemical, 2007, 126, 232-234.	7.8	10
293	Role of Defects on Domain Wall Propagation in Magnetically Bistable Glass-Covered Microwires. Journal of Superconductivity and Novel Magnetism, 2011, 24, 851-854.	1.8	10
294	Controlling the Domain Wall Dynamics by Induced Anisotropies. IEEE Transactions on Magnetics, 2012, 48, 1266-1268.	2.1	10
295	Magnetoelastic Effects and Distribution of Defects in Micrometric Amorphous Wires. IEEE Transactions on Magnetics, 2012, 48, 1324-1326.	2.1	10
296	Correlation between the magnetostriction constant and thermal properties of soft magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1083-1086.	1.8	10
297	The change of domain structure of the amorphous microwire of Fe73.5Cu1Nb3Si13.5B9 composition under thermal treatment. Journal of Applied Physics, 2017, 122, .	2.5	10
298	The impact of bending stress on magnetic properties of Finemet type microwires and ribbons. Journal of Alloys and Compounds, 2018, 743, 388-393.	5. 5	10
299	Torsion induced acceleration of domain wall motion in magnetic microwires. Journal of Magnetism and Magnetic Materials, 2019, 489, 165420.	2.3	10
300	Tuning of magnetic properties in Ni-Mn-Ga Heusler-type glass-coated microwires by annealing. Journal of Alloys and Compounds, 2020, 838, 155481.	5 . 5	10
301	Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications. Sensors, 2020, 20, 3227.	3.8	10
302	Giant magnetic anisotropy in paramagnetic Tb2(MoO4)3. Ferroelectrics, 1994, 151, 103-108.	0.6	9
303	Dynamic coercive field of bistable amorphous FeSiB wires. Journal Physics D: Applied Physics, 1998, 31, 494-497.	2.8	9
304	Stress dependence of the switching field in Co-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 248-250.	2.3	9
305	Low temperature magnetization and resistivity measurements in Co based soft magnetic microwires. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 821-823.	2.3	9
306	A new method of ionization-neutron calorimeter for direct investigation of high-energy electrons and primary nuclei of cosmic-rays up to the "knee―region. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 459, 135-156.	1.6	9

#	Article	IF	Citations
307	Remanent Magnetization States in Soft Magnetic Nanowires. IEEE Transactions on Magnetics, 2006, 42, 3063-3065.	2.1	9
308	Ribbons and micro-wires of CuCo segregated alloys. Journal of Magnetism and Magnetic Materials, 2008, 320, e29-e31.	2.3	9
309	Magnetoelastic Contribution in Domain-Wall Dynamics of Magnetically Bistable Microwires. IEEE Transactions on Magnetics, 2011, 47, 3783-3786.	2.1	9
310	Effect of applied stresses on domainâ€wall propagation in glassâ€coated amorphous microwires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 545-548.	1.8	9
311	Microwave Metamaterials Containing Magnetically Soft Microwires. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	9
312	Magnetic and Magnetoelectric Properties of Rare Earth Molybdates. Research Letters in Physics, 2012, 2012, 1-22.	0.2	9
313	Spectral properties of electromotive force induced by periodic magnetization reversal of arrays of coupled magnetic glass-covered microwires. Journal of Applied Physics, 2012, 111, .	2.5	9
314	Magneto-optical study of domain wall dynamics and giant Barkhausen jump in magnetic microwires. Journal of Magnetism and Magnetic Materials, 2012, 324, 3563-3565.	2.3	9
315	Transformation of magnetic structure in amorphous microwires induced by temperature and high frequency magnetic field. Journal of Alloys and Compounds, 2015, 632, 520-527.	5.5	9
316	Magnetoresistance and Kondo-like behaviour in Co5Cu95 microwires. Journal of Alloys and Compounds, 2016, 674, 266-271.	5 . 5	9
317	Simultaneous Detection of Giant Magnetoimpedance and Fast Domain Wall Propagation in Co-Based Glass-Coated Microwires. IEEE Magnetics Letters, 2016, 7, 1-4.	1.1	9
318	Probing the electronic structure of Ni–Mn–In–Si based Heusler alloys thin films using magneto-optical spectra in martensitic and austenitic phases. Journal of Magnetism and Magnetic Materials, 2017, 432, 455-460.	2.3	9
319	Microwire-Based Sensor Array for Measuring Wheel Loads of Vehicles. Sensors, 2019, 19, 4658.	3.8	9
320	Optimization of Magnetic Properties of Magnetic Microwires by Post-Processing. Processes, 2020, 8, 1006.	2.8	9
321	Stress and/or field annealing of Fe73.5Cu1Nb3Si15.5B7 amorphous ribbon. Journal of Non-Crystalline Solids, 2001, 287, 355-359.	3.1	8
322	Domain Structure of †Thick' Amorphous Microwires with Nearly Zero Magnetostriction. Materials Research Society Symposia Proceedings, 2001, 674, 1.	0.1	8
323	Effect of annealing on surface domain structure and magnetostriction of near zero magnetostrictive Co-rich wire. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 244-246.	2.3	8
324	Surface magnetic behavior of nearly zero magnetostrictive Co-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 177-182.	2.3	8

#	Article	IF	CITATIONS
325	Tailoring of magnetic anisotropy in Fe-rich glass-coated magnetic microwires by thermo-mechanical annealing. Sensors and Actuators A: Physical, 2003, 106, 96-100.	4.1	8
326	Stress dependence of the domain wall potential in amorphous CoFeSiB glass-coated microwires. Physica B: Condensed Matter, 2006, 372, 230-233.	2.7	8
327	Effect of magnetic field frequency on coercivity behavior of nanocrystalline Fe79Hf7B12Si2 glass-coated microwires. Physica B: Condensed Matter, 2008, 403, 286-288.	2.7	8
328	Single domain wall dynamics in thin magnetic wires. Journal of Non-Crystalline Solids, 2008, 354, 5101-5103.	3.1	8
329	Magnetocaloric effect and spin reorientation transition in single-crystal Er2(Co0.4Fe0.6)17. Journal of Applied Physics, 2009, 105, 07A918.	2.5	8
330	Influence of magnetic anisotropy and dipolar interactions on magnetocaloric effect in nanostructured materials. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2234-2239.	1.8	8
331	High-frequency GMI effect in glass-coated amorphous wires. Journal of Alloys and Compounds, 2009, 488, 9-12.	5.5	8
332	Kondo Effect and Magnetotransport Properties in Co-Cu Microwires. IEEE Transactions on Magnetics, 2012, 48, 3532-3535.	2.1	8
333	Effect of magnetoelastic anisotropy on properties of Finemet-type microwires. Journal of Alloys and Compounds, 2012, 536, S291-S295.	5.5	8
334	Magnetic and transport properties of Co–Cu microwires with granular structure. Thin Solid Films, 2013, 543, 142-147.	1.8	8
335	Tailoring the Switching Field Dependence on External Parameters in Magnetic Microwires. IEEE Transactions on Magnetics, 2013, 49, 30-33.	2.1	8
336	Giant magnetoimpedance in thin amorphous and nanocrystalline microwires. Applied Physics A: Materials Science and Processing, 2014, 115, 547-553.	2.3	8
337	Tuneable Metacomposites Based on Functional Fillers. Springer Series in Materials Science, 2016, , 311-357.	0.6	8
338	Internal stresses influence on magnetic properties of Ni-Mn-Ga Heusler-type microwires. Intermetallics, 2018, 94, 42-46.	3.9	8
339	The effect of heat treatment on magnetic and thermal properties of Finemet-type ribbons and microwires. Journal of Magnetism and Magnetic Materials, 2019, 492, 165598.	2.3	8
340	Optimization of GMI Effect and Magnetic Properties of Co-Rich Microwires by Joule Heating. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	8
341	Study of length of domain walls in cylindrical magnetic microwires. Journal of Magnetism and Magnetic Materials, 2020, 512, 167060.	2.3	8
342	Engineering of magnetic properties and domain wall dynamics in Fe-Ni-based amorphous microwires by annealing. AIP Advances, 2020, 10, .	1.3	8

#	Article	IF	Citations
343	Tunable domain wall dynamics in amorphous ferromagnetic microwires. Journal of Alloys and Compounds, 2020, 835, 154843.	5.5	8
344	Ni_2FeSi Heusler Glass Coated Microwires. Acta Physica Polonica A, 2017, 131, 851-853.	0.5	8
345	Effect of Mn, Sn, and Cr additions on the magnetic properties of the amorphous glass-covered wires from the Fe-Si-B system. IEEE Transactions on Magnetics, 1997, 33, 3346-3348.	2.1	7
346	Fabrication and magnetic properties of glass-coated microwires from immiscible elements. Journal of Applied Physics, 1999, 85, 4482-4484.	2.5	7
347	Processing of magnetic properties of nearly zero magnetostrictive glass-coated microwires by current annealing. IEEE Transactions on Magnetics, 2003, 39, 3613-3615.	2.1	7
348	Air-flux magnetoelastic sensor based on inverse Wiedemann effect of amorphous ribbon. Sensors and Actuators A: Physical, 2003, 106, 174-178.	4.1	7
349	Switching field fluctuations in bitable microwires. Physica B: Condensed Matter, 2004, 343, 403-409.	2.7	7
350	Studies of magnetoresistance and structure in Co-Ni-Cu thin wires. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3717-3721.	0.8	7
351	Magnetization processes in thin magnetic wires. Journal of Magnetism and Magnetic Materials, 2006, 300, e305-e310.	2.3	7
352	Amorphous and Nanocrystalline Soft Magnetic Materials: Tailoring of Magnetic Properties, Magnetoelastic and Transport Properties., 2006,, 1091-1157.		7
353	Torsion and tension stress induced transformation of surface magnetic structure in Co-rich amorphous microwires. Journal of Non-Crystalline Solids, 2007, 353, 935-937.	3.1	7
354	Enhancement of GMI effect in magnetic microwires through the relative temperature dependence of magnetization and anisotropy. Journal of Magnetism and Magnetic Materials, 2009, 321, 3875-3877.	2.3	7
355	Design of magnetic properties of arrays of magnetostatically coupled glassâ€covered magnetic microwires. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1954-1959.	1.8	7
356	The Adiabatic Temperature Changes in the Vicinity of the First-Order Paramagnetic-Ferromagnetic Transition in the Ni-Mn-In-B Heusler Alloy. IEEE Transactions on Magnetics, 2012, 48, 3738-3741.	2.1	7
357	Manipulation of domain propagation dynamics with the magnetostatic interaction in a pair of Fe-rich amorphous microwires. Journal of Applied Physics, 2013, 114 , .	2.5	7
358	Induced Giant Magnetoimpedance Effect by Current Annealing in Ultra Thin Co-Based Amorphous Ribbons. IEEE Transactions on Magnetics, 2013, 49, 1009-1012.	2.1	7
359	Investigations of local electronic transport in InAs nanowires by scanning gate microscopy at liquid helium temperatures. JETP Letters, 2014, 100, 32-38.	1.4	7
360	Studies of the Defects Influence on Magnetic Properties of Glass-Coated Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	7

#	Article	IF	CITATIONS
361	Tailoring of Magnetic Properties of Amorphous Ferromagnetic Microwires. Journal of Superconductivity and Novel Magnetism, 2015, 28, 977-981.	1.8	7
362	On mechanisms of domain switching in amorphous glassâ€coated wires. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 350-355.	1.8	7
363	Engineering of Giant Magnetoimpedance Effect of Amorphous and Nanocrystalline Microwires. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1359-1366.	1.8	7
364	Engineering of Magnetic Properties of Co- and Fe-Rich Microwires. IEEE Transactions on Magnetics, 2018, 54, 1-7.	2.1	7
365	Giant magnetoimpedance effect at GHz frequencies in amorphous microwires. AIP Advances, 2019, 9, .	1. 3	7
366	Influence of combined mechanical stress on magnetic structure in magnetic microwires. Journal of Magnetism and Magnetic Materials, 2020, 513, 166974.	2.3	7
367	Multiferroic polymer composite based on Heusler-type magnetic microwires with combined magnetocaloric and magnetoelectric effects. Journal of Magnetism and Magnetic Materials, 2020, 510, 166884.	2.3	7
368	Domain Wall Dynamics in Amorphous Microwires. Acta Physica Polonica A, 2008, 113, 7-10.	0.5	7
369	Tailoring GMI effect in Co-rich glass coated microwires by Joule heating. Transactions of the Magnetics Society of Japan, 2003, 3, 122-125.	0.5	7
370	Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperature. Chemosensors, 2022, 10, 225.	3.6	7
371	Interaction between Co-rich glass-covered microwires. Journal Physics D: Applied Physics, 2003, 36, 1058-1061.	2.8	6
372	Effect of high-frequency driving current on magnetization reversal in Co-rich amorphous microwires. Applied Physics Letters, 2004, 85, 2292-2294.	3.3	6
373	Magnetization reversal process at low applied magnetic field in a Co-rich amorphous wire. Physica B: Condensed Matter, 2004, 343, 369-373.	2.7	6
374	High-frequency magnetoimpedance in amorphous and nanostructured Fe73.5Si13.5B9Cu1Nb3 wires. Journal of Magnetism and Magnetic Materials, 2006, 300, 24-28.	2.3	6
375	Study of surface magnetic properties in Co-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2006, 300, e93-e97.	2.3	6
376	Single-domain particle with random anisotropy. Journal of Non-Crystalline Solids, 2007, 353, 796-798.	3.1	6
377	Studies of Fe–Cu microwires with nanogranular structure. Journal of Physics Condensed Matter, 2009, 21, 035301.	1.8	6
378	Control of domain nucleation in glass covered amorphous microwires. Journal of Applied Physics, 2009, 105, 123911.	2.5	6

#	Article	IF	Citations
379	Domainâ€wall propagation in thin Feâ€rich glassâ€coated amorphous wires. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 679-682.	1.8	6
380	Microwave Metamaterials Containing Magnetically Soft Microwires. Advances in Science and Technology, 0 , , .	0.2	6
381	Tuneable Composites Containing Magnetic Microwires. , 0, , .		6
382	Annealing effect on local nucleation fields in bistable microwires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 549-552.	1.8	6
383	Studies of Magnetic Properties of Amorphous Microwires Produced by Combination of by Quenching, Glass Removal and Drawing Techniques. Key Engineering Materials, 0, 495, 280-284.	0.4	6
384	Giant magneto-impedance effect of thin magnetic wires at elevated frequencies. Journal of Applied Physics, 2012, 111, 07E512.	2.5	6
385	Magneto-Optical Spectroscopy of Heusler Alloys: Bulk Samples, Thin Films and Microwires. Solid State Phenomena, 0, 190, 335-338.	0.3	6
386	Advanced Magnetic Materials. Research Letters in Physics, 2012, 2012, 1-2.	0.2	6
387	Magnetoimpedance Response in Co-Based Amorphous Ribbons Obtained Under the Action of a Magnetic Field. IEEE Transactions on Magnetics, 2012, 48, 4375-4377.	2.1	6
388	Fast domain wall dynamics in amorphous and nanocrystalline magnetic microwires. Journal of Magnetism and Magnetic Materials, 2012, 324, 3566-3568.	2.3	6
389	Fast Magnetization Switching in Amorphous Microwires. Acta Physica Polonica A, 2014, 126, 7-11.	0.5	6
390	Hopkinson effect in Coâ€rich glassâ€coated microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1130-1132.	0.8	6
391	Effect of Nanocrystallization on Magnetic Properties and GMI Effect of Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	6
392	Transformation of magnetic domain structure in Co- and Fe-rich amorphous microwires. Journal of Alloys and Compounds, 2014, 615, S304-S307.	5.5	6
393	Studies of thermal and magnetic properties of Fe-based amorphous and nanocrystalline glass coated microwires. Journal of Alloys and Compounds, 2014, 615, S256-S260.	5 . 5	6
394	Processing magnetic microwires for magnetic bistability and magnetoimpedance., 2015,, 225-274.		6
395	Estimation of the frequency and magnetic field dependence of the skin depth in Co-rich magnetic microwires from GMI experiments. Journal of Science: Advanced Materials and Devices, 2016, 1, 388-392.	3.1	6
396	Left-handed metacomposites containing carbon fibers and ferromagnetic microwires. AIP Advances, 2017, 7, 056110.	1.3	6

#	Article	IF	CITATIONS
397	Surface magnetic structures induced by mechanical stresses in Co-rich microwires. Journal of Alloys and Compounds, 2018, 735, 1449-1453.	5 . 5	6
398	High frequency giant magnetoimpedance effect of a stress-annealed Fe-rich glass-coated microwire. Journal of Alloys and Compounds, 2019, 802, 112-117.	5 . 5	6
399	Impact of Stress Annealing on the Magnetization Process of Amorphous and Nanocrystalline Co-Based Microwires. Materials, 2019, 12, 2644.	2.9	6
400	Fine tuning of domain helical structure in magnetic microwires. Journal of Magnetism and Magnetic Materials, 2020, 497, 166019.	2.3	6
401	Structural and low-temperature magnetic properties of as-quenched and annealed Ni–Si–B alloys produced by rapid solidification. Intermetallics, 2021, 132, 107140.	3.9	6
402	Development of Co-Rich Microwires with Graded Magnetic Anisotropy. Sensors, 2022, 22, 187.	3.8	6
403	FMR study of amorphous Co68Mn7Si10B15 glass-coated microwires. Physica Status Solidi A, 2003, 196, 205-208.	1.7	5
404	Magnetic and Mechanical Properties of Magnetic Glass-Coated Microwires with Different Glass Coating. Materials Science Forum, 2005, 480-481, 293-298.	0.3	5
405	Influence of the ac magnetic field frequency on the magnetoimpedance of amorphous wire. Journal Physics D: Applied Physics, 2006, 39, 1718-1723.	2.8	5
406	Temperature dependence of magnetic properties of Cu80Co19Ni1 thin microwires. Journal of Magnetism and Magnetic Materials, 2007, 316, e71-e73.	2.3	5
407	Studies of thin microwires with enhanced magnetic softness and GMI effect. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 674-678.	1.8	5
408	High frequency magneto impedance in amorphous microwires. Journal of Physics: Conference Series, 2010, 200, 082009.	0.4	5
409	Magnetic Properties and GMI Effect of Ductile Amorphous Microwires. IEEE Transactions on Magnetics, 2012, 48, 4034-4037.	2.1	5
410	Giant magnetoâ€impedance effect in thin Finemet nanocrystalline microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1120-1124.	0.8	5
411	Domain Wall Propagation in Co-Based Glass-Coated Microwires: Effect of Stress Annealing and Tensile Applied Stresses. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	5
412	Soft Magnetic Wires for Sensor Applications. Springer Series in Materials Science, 2016, , 221-277.	0.6	5
413	Torsion Stress Induced Magnetic Switching in Amorphous Microwires. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	5
414	GMR effect and Kondo-like behaviour in Co-Cu microwires. Journal of Alloys and Compounds, 2017, 695, 976-980.	5 . 5	5

#	Article	IF	CITATIONS
415	Martensitic transformation behavior of Ni2.44Mn0.48Ga1.08 thin glass-coated microwire. Journal of Alloys and Compounds, 2018, 745, 217-221.	5. 5	5
416	Tailoring of magnetic softness and GMI effect in Fe-rich thin magnetic wires. AIP Advances, 2018, 8, 056102.	1.3	5
417	Ultrafast Magnetization Dynamics in Metallic Amorphous Ribbons with a Giant Magnetoimpedance Response. Physical Review Applied, 2020, 13, .	3.8	5
418	Development of iron-rich microwires with a unique combination of magnetic properties. Scripta Materialia, 2021, 195, 113726.	5.2	5
419	Post-Annealing Influence on Magnetic Properties of Rapidly Quenched Ni–Mn–Ga Glass-Coated Microwires. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	5
420	Study of the magnetic properties of Fe73.4â^'xCu1Nb3.1Si13.4+xB9.1 (1.1â $@\frac{1}{2}$ xâ $@\frac{1}{2}$ 1.6) microwires. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 322-324.	: 2.3	4
421	Effect of heat treatment on impedance behavior in nearly-zero magnetostriction (Co/sub 0.95/Fe/sub) Tj ETQq1 1	0,784314 2.1	rgBT /Over
422	Effects of torsion on the magnetoimpedance response of CoFeBSi amorphous wires. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 721-723.	2.3	4
423	Effect of applied stress on remagnetization and magnetization profile of Co–Si–B amorphous wire. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1439-1442.	2.3	4
424	Magnetoimpedance of stress and/or field annealed Fe73.5Cu1Nb3Si15.5B7 amorphous and nanocrystalline ribbon. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 463-465.	2.3	4
425	Magnetoresistance in Co–Ni–Cu glass coated microwires. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1389-E1391.	2.3	4
426	Devitrification of the Finemet-based Microwires during the Heat Treatment. European Physical Journal D, 2004, 54, 177-180.	0.4	4
427	Magnetoresistance in Granular Co–Cu Glass-Coated Microwires. IEEE Transactions on Magnetics, 2004, 40, 2254-2256.	2.1	4
428	Investigation of surface magnetization reversal in Co-rich amorphous microwires with magneto-impedance effect. Physica B: Condensed Matter, 2006, 384, 5-8.	2.7	4
429	Dynamic electromagnetic processes in micro-wires inferred from GMI-characteristics. Journal of Magnetism and Magnetic Materials, 2006, 300, e88-e92.	2.3	4
430	Surface and bulk magnetic hysteresis loops of Co-rich glass covered microwires. , 2006, , .		4
431	Dynamic magnetization processes in magnetostrictive amorphous wires. Journal of Applied Physics, 2006, 100, 083907.	2.5	4
432	Complex susceptibility measurements in amorphous glass-coated microwires. Journal of Non-Crystalline Solids, 2007, 353, 928-930.	3.1	4

#	Article	IF	CITATIONS
433	Investigation of helical magnetic structure in Co-rich amorphous microwires. Journal of Magnetism and Magnetic Materials, 2007, 316, 332-336.	2.3	4
434	Magneto-optical determination of helical magnetic structure in amorphous microwires. Physica B: Condensed Matter, 2008, 403, 289-292.	2.7	4
435	Experimental determination of limit angle of helical anisotropy in amorphous magnetic microwires. Journal of Magnetism and Magnetic Materials, 2009, 321, 803-805.	2.3	4
436	Magnetic and transport properties of Fe-rich thin cold-drawn amorphous wires. Journal of Alloys and Compounds, 2009, 488, 5-8.	5.5	4
437	Fabrication, structural and magnetic characterization of thin microwires with novel composition Cu70(Co70Fe5Si10B15)30. Journal of Alloys and Compounds, 2009, 483, 566-569.	5.5	4
438	Fabrication and First Characterization of Ni ₂ MnGa Glass-Coated Microwires. Key Engineering Materials, 0, 495, 236-238.	0.4	4
439	Magneto-Optical and Magnetic Studies of Co-Rich Glass-Covered Microwires. Research Letters in Physics, 2012, 2012, 1-20.	0.2	4
440	Magnetoelastic Contribution in Domain Wall Propagation of Micrometric Wires. Journal of Nanoscience and Nanotechnology, 2012, 12, 7582-7586.	0.9	4
441	Manipulation of Magnetic Domain Structures With Helical Magnetization in Magnetic Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-3.	2.1	4
442	Structural and phase transformations in the low-temperature annealed amorphous "finemet―type microwires. Journal of Alloys and Compounds, 2014, 586, S225-S230.	5 . 5	4
443	Multidomain Structures in Magnetic Microwire. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	4
444	Thermal Conductivity and Diffusivity Measurements of Glass-Coated Magnetic Microwires Using Lock-in Thermography. International Journal of Thermophysics, 2015, 36, 1137-1141.	2.1	4
445	Tuning of Magnetic Properties of Ni–Mn–Ga Glass-Coated Microwires. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	4
446	Magnetic Characterization in the Rayleigh Region of Nanocrystalline Magnetic Cores. Materials, 2018, 11, 2278.	2.9	4
447	Effect of annealing on magnetic properties of Ni–Mn–Ga glass-coated microwires. Journal of Materials Research, 2018, 33, 2148-2155.	2.6	4
448	Engineering of Magnetic Properties of Fe-Rich Microwires by Stress Annealing. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	4
449	The Study of Magnetization Process in Amorphous FeNiSiB Microwires. Acta Physica Polonica A, 2010, 118, 807-808.	0.5	4
450	Tuning of Magnetoimpedance Effect and Magnetic Properties of Fe-Rich Glass-Coated Microwires by Joule Heating. Sensors, 2022, 22, 1053.	3.8	4

#	Article	IF	CITATIONS
451	Evolution of the Magnetic Properties with Annealing Temperature for CoMnSiB Microwires. , 1997 , , $743-748$.		3
452	Correlation of magnetic and structural properties of glass-coated Cu-based microwires. Journal of Magnetism and Magnetic Materials, 2002, 249, 126-130.	2.3	3
453	Kerr effect investigation of magnetization reversal in Co-rich glass coated microwires. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 188-190.	2.3	3
454	Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires. Journal of Magnetism and Magnetic Materials, 2005, 294, 193-201.	2.3	3
455	Tensile stress influence on coercive properties in Fe-rich cold-drawn amorphous wires. Journal of Magnetism and Magnetic Materials, 2005, 294, e167-e170.	2.3	3
456	Tensile stress dependence of the magnetostatic interaction between Fe-rich wires. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 595-598.	2.3	3
457	Stress dependence of coercivity in nanocrystalline Fe79Hf7B12Si2 glass-coated microwires. Journal of Applied Physics, 2006, 99, 08F116.	2.5	3
458	Experimental Determination of Relation Between Helical Anisotropy and Torsion Stress in Amorphous Magnetic Microwires. IEEE Transactions on Magnetics, 2008, 44, 3938-3941.	2.1	3
459	Studies of giant magnetoimpedance effect of Coâ€rich microwires in wide frequency range. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 671-673.	1.8	3
460	Studies of electrical resistance in Ni75Cr7Si7.5Mn10.5and Ni80.5Cr4.2Si6.5Mn5B3.8glass-coated wires. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 953-957.	0.8	3
461	Development of magnetically soft microwires with GMI effect. Journal of Physics: Conference Series, 2011, 303, 012085.	0.4	3
462	Domain structure of magnetic nanotube with transverse anisotropy. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 535-539.	1.8	3
463	High-Frequency Electric Current Influence on Magnetization Reversal and Domain Structure in Co-Rich Amorphous Microwires. IEEE Transactions on Magnetics, 2012, 48, 3800-3802.	2.1	3
464	Amorphous microwires with enhanced magnetic softness and GMI characteristics. EPJ Web of Conferences, 2012, 29, 00052.	0.3	3
465	GMR effect in Co-Cu microwires. Journal of the Korean Physical Society, 2013, 62, 1940-1944.	0.7	3
466	Manipulation of domain wall dynamics in microwires by transverse magnetic field. Journal of the Korean Physical Society, 2013, 62, 1363-1367.	0.7	3
467	Effect of Annealing on Off-Diagonal GMI Effect of Co-Rich Amorphous Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	3
468	Effect of Annealing on Magnetic Properties and Giant Magnetoimpedance Effect of Amorphous Microwires. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	3

#	Article	IF	Citations
469	Magnetocaloric effects in magnetic microwires for magnetic refrigeration applications. , 2015, , 569-587.		3
470	Axially symmetric domain walls confined in ferromagnetic nanotubes. Materials Research Express, 2015, 2, 126103.	1.6	3
471	Giant Magnetoimpedance Effect of Amorphous and Nanocrystalline Glass-Coated Microwires. Smart Sensors, Measurement and Instrumentation, 2016, , 103-130.	0.6	3
472	Kondo-like behavior and GMR effect in granular Cu90Co10 microwires. AIP Advances, 2017, 7, .	1.3	3
473	Amorphous and Nanocrystalline Glass-Coated Wires: Optimization of Soft Magnetic Properties. Springer Series in Materials Science, 2017, , 1-31.	0.6	3
474	Current induced domain wall propagation in Co-rich amorphous microwires. AIP Advances, 2017, 7, 056026.	1.3	3
475	Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet. Journal of Magnetism and Magnetic Materials, 2017, 443, 124-130.	2.3	3
476	MOKE Study of Amorphous Microwires for Temperature Sensors. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	3
477	Magnetic properties of "thick―glass-coated Fe-rich microwires. AlP Advances, 2019, 9, .	1.3	3
478	Reversible and Non-Reversible Transformation of Magnetic Structure in Amorphous Microwires. Nanomaterials, 2020, 10, 1450.	4.1	3
479	Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness GMI Effect and Domain Wall Dynamics of Amorphous Microwires. Physics of Metals and Metallography, 2020, 121, 316-321.	1.0	3
480	Giant magneto-impedance in glass covered microwires. European Physical Journal Special Topics, 1998, 08, Pr2-225-Pr2-228.	0.2	3
481	Susceptibility Spectroscopy in FeNiSiB Microwires. Acta Physica Polonica A, 2008, 113, 155-158.	0.5	3
482	GMI Effect of Ultra-Soft Magnetic Soft Amorphous Microwires. Open Materials Science Journal, 2012, 6, 39-43.	0.2	3
483	MOKE studies of magnetic microwires with longitudinally distributed properties. Journal of Magnetism and Magnetic Materials, 2022, 547, 168824.	2.3	3
484	Effect of Joule heating on GMI and magnetic properties of Fe-rich glass-coated microwires. AIP Advances, 2022, 12, .	1.3	3
485	Coolingâ€induced phase transition in amorphous CoCrZr alloy. Journal of Applied Physics, 1993, 73, 5716-5717.	2.5	2
486	Effect of annealing on torsion giant impedance of Co-rich amorphous wires with vanishing magnetostriction. Journal of Applied Physics, 2002, 91, 8426.	2.5	2

#	Article	IF	CITATIONS
487	Switching Field Dependence on Applied Field Orientation in Bistable Fe-Rich Microwires. Physica Status Solidi A, 2002, 189, 795-798.	1.7	2
488	Inducing rotation and levitation in magnetostrictive wires and rods: correlated amplitude and frequency of exciting ac axial magnetic field. Sensors and Actuators A: Physical, 2003, 106, 274-277.	4.1	2
489	Influence of an ac magnetic field and induced magnetic anisotropy on the surface magnetoimpedance tensor in an amorphous wire. Journal Physics D: Applied Physics, 2004, 37, 2773-2779.	2.8	2
490	Novel surface anisotropy term in the FMR spectra of amorphous microwires. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1145-E1146.	2.3	2
491	The influence of glass coating on the single domain wall potential in amorphous glass-coated Fe-based microwires. Journal of Magnetism and Magnetic Materials, 2006, 304, e519-e521.	2.3	2
492	1D and 2D position detection using magnetoimpedance sensor array. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2626-2629.	1.8	2
493	Domain Wall Dynamics in Thin Magnetic Wires. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1713-1716.	1.8	2
494	Stress Dependence of Switching Field during the Devitrification of Finemet-Based Magnetic Microwires. Key Engineering Materials, 0, 543, 495-498.	0.4	2
495	The leftâ∈hand behaviour of polymer composites with Feâ∈based microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1086-1088.	0.8	2
496	Manipulation of Magnetic Properties and Domain Wall Dynamics in Amorphous Ferromagnetic Microwires by Annealing under Applied Stress. Solid State Phenomena, 2014, 215, 432-436.	0.3	2
497	Manipulation of Magnetic Properties and Domain Wall Dynamics of Amorphous Ferromagnetic Co _{68.7} Fe ₄ Ni ₁ B ₁₃ Si ₁₁ Mo _{2.3} Microwire by Changing of Annealing Temperature. Solid State Phenomena, 2015, 233-234, 269-272.	0.3	2
498	Domain structure and domain wall dynamics in microwires as determined by the magneto-optical Kerr effect., 2015,, 403-421.		2
499	Tuning of Magnetic Properties of Ni-Mn-In-Co Heusler-Type Glass-Coated Microwires. Jom, 2015, 67, 2117-2122.	1.9	2
500	Effect of Temperature and Time of Stress Annealing on Magnetic Properties of Amorphous Microwires. Acta Physica Polonica A, 2015, 127, 600-602.	0.5	2
501	Temperature Dependent Magnetic and Structural Properties of Ni-Mn-Ga Heusler Alloy Glass-Coated Microwires. Acta Physica Polonica A, 2015, 127, 603-605.	0.5	2
502	GMR and Kondo Effects in Cu-Co Microwires. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1109-1114.	1.8	2
503	Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires. Journal of Applied Physics, 2018, 123, .	2.5	2
504	Giant magnetoimpedance and magneto-optical Kerr effects in (Co63Ni37)75Si15B10 amorphous ribbon. Intermetallics, 2020, 125, 106925.	3.9	2

#	Article	IF	Citations
505	Unidirectional anisotropy in bent ferromagnetic microwires. Journal of Alloys and Compounds, 2020, 830, 154601.	5.5	2
506	Helical magnetic structures in magnetostrictive amorphous microwires. Physica B: Condensed Matter, 2021, 604, 412718.	2.7	2
507	Magneto-Transport Properties of Co–Cu Thin Films Obtained by Co-Sputtering and Sputter Gas Aggregation. Nanomaterials, 2021, 11, 134.	4.1	2
508	Spectral Characteristics of the Arrays of Magnetically Coupled Glass-Covered Microwires. Sensor Letters, 2013, 11, 115-118.	0.4	2
509	Influence of Thermal Treatment on Domain Wall Dynamics in Glass-Coated Microwires. Acta Physica Polonica A, 2010, 118, 738-739.	0.5	2
510	Magnetic Characterization of Melt-Spun Co-Ni-Ga Ferromagnetic Superelastic Alloy. Acta Physica Polonica A, 2017, 131, 1075-1077.	0.5	2
511	High Frequency Giant Magnetoimpedance Effect of amorphous microwires for magnetic sensors applications. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-6.	0.7	2
512	Improvement of high frequency giant magnetoimpedance effect in CoFeSiB amorphous ribbon with vanishing magnetostriction by electrodeposited Co coating surface layer. Journal of Materials Research and Technology, 2021, 15, 6929-6939.	5.8	2
513	Stress Dependence of Switching Field in Ultra-Thin Amorphous Wires. Materials Science Forum, 1999, 302-303, 244-248.	0.3	1
514	Orientational dependence of switching field in bistable Co-rich wires. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 185-187.	2.3	1
515	High frequency electric current influence on circular bistability in Co-rich amorphous microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3385-3388.	0.8	1
516	Surface magnetization reversal in Co-rich amorphous microwires in perpendicular magnetic fields. Physica B: Condensed Matter, 2004, 343, 374-378.	2.7	1
517	Thermal dependence of coercivity in granular CoNiCu glass coated microwires. Journal of Magnetism and Magnetic Materials, 2007, 310, e867-e869.	2.3	1
518	Magnetic Properties and High–Frequency GMI Effect in Thin Glass-Coated Amorphous Wires. AIP Conference Proceedings, 2008, , .	0.4	1
519	Domain Wall Propagation in Thin Fe-Rich Glass-Coated Amorphous Wires. AIP Conference Proceedings, 2008, , .	0.4	1
520	Experimental study of surface domain structure effects on off-diagonal magnetoimpedance in glass-coated Co-based microwires. Journal of Physics: Conference Series, 2008, 98, 062004.	0.4	1
521	Nanocrystallization and Surface Magnetic Structure of Ferromagnetic Ribbons and Microwires. Springer Proceedings in Physics, 2009, , 205-217.	0.2	1
522	Pinning Field Distribution and Microstructural Study of Thermal Annealed Fe-Nb-Cu-Si-B Wires. IEEE Transactions on Magnetics, 2010, 46, 387-389.	2.1	1

#	Article	IF	Citations
523	Nucleation and transformation of circular magneticâ€domain structure in amorphous microwires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2277-2280.	1.8	1
524	Domain wall dynamics of magnetically bistable microwires. EPJ Web of Conferences, 2012, 29, 00036.	0.3	1
525	Interaction of bistable glass-coated microwires in different positional relationship. Physica B: Condensed Matter, 2012, 407, 1438-1441.	2.7	1
526	Influence of Magnetoelastic Anisotropy on Properties of Nanostructured Microwires. Advanced Materials Research, 0, 646, 59-66.	0.3	1
527	Domain walls collision in Fe-rich and Co-rich glass covered microwires. EPJ Web of Conferences, 2013, 40, 17004.	0.3	1
528	Magnetic Characterization of Co_2MnSi Heusler Microwires. Acta Physica Polonica A, 2014, 126, 196-197.	0.5	1
529	Manipulation of magnetic and magneto-transport properties of amorphous glass-coated microwires through various annealing processes. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1125-1129.	0.8	1
530	Multicore Off-Diagonal Magnetoimpedance Sensors Utilising Amorphous Wires. Physics Procedia, 2015, 75, 1419-1426.	1.2	1
531	Multi-domain structures in magnetic microwire. , 2015, , .		1
532	High frequency giant magnetoimpedance effect of soft magnetic amorphous microwires. , 2015, , .		1
533	Magnetic Properties of Nanocrystalline Microwires. Journal of Electronic Materials, 2016, 45, 212-218.	2.2	1
534	Optimization of Soft Magnetic Properties in Fe-Ni-Based Magnetic Microwires. IEEE Transactions on Magnetics, 2016, 52, 1-3.	2.1	1
535	Magnetic and Transport Properties of M-Cu (M = Co, Fe) Microwires. Smart Sensors, Measurement and Instrumentation, 2016, , 81-102.	0.6	1
536	Magnetic Properties and Defects of Fe-Ni-Based Magnetic Microwires. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	1
537	Tailoring of Soft Magnetic Properties and High Frequency Giant Magnetoimpedance in Amorphous Ribbons. Springer Series in Materials Science, 2017, , 33-52.	0.6	1
538	Surface magnetic properties and giant magnetoimpedance effect in Co-based amorphous ribbons. , 2017, , .		1
539	Tuning of Magnetic Properties of Magnetic Microwires. IEEE Magnetics Letters, 2018, 9, 1-4.	1.1	1
540	Control of Domain Structure in Magnetic Microwires by Combination of Torsion and Tension Stresses. IEEE Magnetics Letters, 2020, 11, 1-5.	1.1	1

#	Article	IF	Citations
541	CRITICAL BEHAVIOUR OF AMORPHOUS FERROMAGNETIC MATERIALS WITH MAGNETIC BISTABILITY., 1998, , .		1
542	GIANT MAGNETOIMPEDANCE IN HEAT TREATED FeSiBNbCu NANOCRYSTALLINE RIBBONS. , 1998, , .		1
543	Tunable Magnetic Anisotropy and Magnetization Reversal in Microwires. Springer Series in Materials Science, 2017, , 111-129.	0.6	1
544	Engineering of Magnetic Properties of Magnetic Microwires. Acta Physica Polonica A, 2018, 133, 321-328.	0.5	1
545	Graded magnetic anisotropy in Co-rich microwires. AIP Advances, 2022, 12, .	1.3	1
546	Experimental study of regions of reversed magnetization in an amorphous layer of Co70Fe5Si10B15. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1988, 31, 250-255.	0.0	0
547	Effect of tensile stresses on GMI of amorphous microwires. , 1999, , .		0
548	Tailoring of Magnetic Properties of Glass coated Microwires. Materials Research Society Symposia Proceedings, 2001, 674, 1.	0.1	0
549	Giant magneto-impedance and surface hysteresis loops in Co-rich amorphous microwires. , 0, , .		0
550	Processing of magnetic properties of nearly-zero magnetostrictive glass coated microwires by current annealing. , 0 , , .		0
551	Round Table Discussion: Present and Future Applications of Nanocrystalline Magnetic Materials. ChemInform, 2005, 36, no.	0.0	0
552	Switching field distribution study in amorphous microwires. , 2005, , .		0
553	Remanent magnetization states of soft magnetic nanowires. , 2006, , .		O
554	Equation of motion of domain walls and the dynamic coercive field in bistable wires. Computational Materials Science, 2006, 36, 268-271.	3.0	0
555	Magnetic and magnetotransport properties in thin Fe-rich wires processed by cold drawing. Physics of Metals and Metallography, 2006, 102, S8-S12.	1.0	O
556	High â^šÈ¼?? frequency GMI effect in glass-coated amorphous wires. , 2006, , .		0
557	Studies of the remagnetization process in cold drawn Fe-rich thin amorphous wires. Journal of Magnetism and Magnetic Materials, 2007, 310, e893-e895.	2.3	O
558	Microstructure and soft magnetic properties of nanocrystalline (Co _{0.77} Si _{0.135} B _{0.095}) ₉₀ Fe ₇ Nb ₃ alloy. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1363-1366.	1.8	O

#	Article	IF	CITATIONS
559	Multilayered Magnetic Wires and Films for Electromagnetic Sensor Technology. Advances in Science and Technology, $0, \dots$	0.2	0
560	Development of Stress and Temperature Sensitive Microwires for the Sensor Applications and Tuneable Composite Materials. Advances in Science and Technology, 2008, 54, 180-186.	0.2	0
561	Nanomagnetism. Journal of Nanoscience and Nanotechnology, 2008, 8, 2729-2730.	0.9	0
562	Tunable Microwave Composites Containing Ferromagnetic Microwires. Materials Research Society Symposia Proceedings, 2009, 1223, 3041.	0.1	0
563	Magnetic properties of microwires with amorphous structure after thermo mechanical treatment. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 958-961.	0.8	O
564	Magnetization reversal in thin glass covered amorphous microwires with helical anisotropy. Journal of Physics: Conference Series, 2010, 200, 082001.	0.4	0
565	Effect of annealing on magnetic properties and Giant magnetoimpedance effect of amorphous microwires. , 2013, , .		0
566	GMI effect of amorphous microwires with enhanced magnetic softness. Journal of the Korean Physical Society, 2013, 62, 1382-1387.	0.7	0
567	Recent Research on the Magnetoimpedance Effect in Co-Based Amorphous Ribbons. Advanced Materials Research, 0, 646, 222-227.	0.3	O
568	Effect of nanocrystallization on Giant magnetoimpedance effect of microwires. , 2013, , .		0
569	Soft magnetic amorphous ribbons with high frequency Magnetoimpedance for sensors. , 2013, , .		O
570	Magnetic Properties and Giant Magnetoimpedance in Amorphous and Nanocrystalline Microwires. Acta Physica Polonica A, 2014, 126, 146-147.	0.5	0
571	GHz magnetic field influence on magnetization reversal in amorphous microwires. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 986-988.	0.8	0
572	Nanoscaled Magnetism and Applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 965-967.	0.8	0
573	Influence of the Defects on Magnetic Properties of Glass-Coated Microwires. Solid State Phenomena, 0, 233-234, 285-289.	0.3	0
574	Magneto-impedance and ferro-magnetic resonance effects in thin amorphous wires and their application in functional composites materials at microwaves. , 2015, , .		0
575	Studies of Giant magnetoimpedance effect in soft magnetic microwires at GHz frequencies. , 2016, , .		О
576	Tunable metacomposites containing hybrid Co- and Fe-based ferromagnetic microwires. , 2016, , .		0

#	Article	IF	CITATIONS
577	Magnetism and Applications of Magnetic Wires. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 339-340.	1.8	O
578	Features of Amorphous Microwires With Spontaneous and Induced Magnetic Bistability. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	0
579	Reversible switching of magnetic states in amorphous microwires. , 2017, , .		0
580	Current controlled magnetic memory based on hysteretic switching of impedance in conductor with inclined anisotropy easy axis. , 2017 , , .		0
581	Engineering of magnetic properties and GMI effect of Co- and Fe-rich microwires by annealing., 2017,,.		0
582	A double-negative waveguide metacomposite enabled by ferromagnetic microwires. , 2017, , .		0
583	Analysis of the off-diagonal component of giant magnetoimpedance effect in Co-based (as-cast and) Tj ETQq1	1 0.784314 3.9	rgBT /Overlo
584	Optimization of GMI Effect and Magnetic Properties of Co-Rich Microwires by Joule Heating., 2018,,.		0
585	Engineering of Giant Magnetoimpedance Effect in Co-rich Microwires by Joule heating. , 2018, , .		0
586	Optimization of Giant Magnetoimpedance Effect in Fe-rich Microwires., 2018,,.		0
587	Engineering of GMI Effect of Fe-Rich Microwires by Stress Annealing. , 2018, , .		0
588	Negative Mobility of Single Domain Wall in Magnetic Microwires. Acta Physica Polonica A, 2010, 118, 747-748.	0.5	0
589	Magnetic Properties and Giant Magneto-Impedance Effect of Ductile Amorphous Microwires Without Glass Coating. Sensor Letters, 2012, 10, 731-735.	0.4	0
590	Remagnetization Process of Fe-Rich Amorphous Wire Under Time Dependent Tensile Stress. Sensor Letters, 2013, 11, 32-35.	0.4	0
591	Kerr Effect as Method of Investigation of Magnetization Reversal in Magnetic Wires. , 2014, , 13-22.		0
592	Tailoring of Magnetic Properties and Magnetoimpedance Effect in Thin Amorphous Wires. Acta Physica Polonica A, 2016, 129, 694-697.	0.5	0
593	Frequency and Magnetic Field Dependence of the Skin Depth in Co-rich Soft Magnetic Microwires. Advanced Electromagnetics, 2016, 5, 39.	1.0	0
594	Engineering of giant magnetoimpedance effect of amorphous and nanocrystalline microwires. Advanced Electromagnetics, 2016, 5, 63.	1.0	0

#	Article	IF	CITATIONS
595	Magneto-optical study of microwire in presence of magnetic field of super high frequency. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-4.	0.7	O
596	Magnetic and Transport properties of Co-Cu Microwires. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-6.	0.7	0
597	Domain wall propagation in Fe-rich magnetic microwires with graded magnetic anisotropy. AIP Advances, 2022, 12, 035228.	1.3	0
598	10.1063/9.0000324.1., 2022, , .		0