Ruth Anne Eatock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Differentiation Status of Hair Cells That Regenerate Naturally in the Vestibular Inner Ear of the Adult Mouse. Journal of Neuroscience, 2021, 41, 7779-7796.	3.6	16
2	Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nature Communications, 2020, 11, 63.	12.8	43
3	Ionic Conductances of Vestibular Afferent Neurons: Shaping Head Motion Signals From the Inner Ear. , 2020, , 211-227.		0
4	Specializations for Fast Signaling in the Amniote Vestibular Inner Ear. Integrative and Comparative Biology, 2018, 58, 341-350.	2.0	54
5	Sodium channel diversity in the vestibular ganglion: Na _V 1.5, Na _V 1.8, and tetrodotoxin-sensitive currents. Journal of Neurophysiology, 2016, 115, 2536-2555.	1.8	19
6	Distribution of Na,K-ATPase α Subunits in Rat Vestibular Sensory Epithelia. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 739-754.	1.8	22
7	Tuning and Timing in Mammalian Type I Hair Cells and Calyceal Synapses. Journal of Neuroscience, 2013, 33, 3706-3724.	3.6	118
8	Vestibular Hair Cells and Afferents: Two Channels for Head Motion Signals. Annual Review of Neuroscience, 2011, 34, 501-534.	10.7	239
9	Molecular Microdomains in a Sensory Terminal, the Vestibular Calyx Ending. Journal of Neuroscience, 2011, 31, 10101-10114.	3.6	138
10	High-Pass Filtering at Vestibular Frequencies by Transducer Adaptation in Mammalian Saccular Hair Cells. , 2011, , .		0
11	Ion Channels Set Spike Timing Regularity of Mammalian Vestibular Afferent Neurons. Journal of Neurophysiology, 2010, 104, 2034-2051.	1.8	86
12	Ion channels in mammalian vestibular afferents may set regularity of firing. Journal of Experimental Biology, 2008, 211, 1764-1774.	1.7	83
13	Developmental Changes in Two Voltage-Dependent Sodium Currents in Utricular Hair Cells. Journal of Neurophysiology, 2007, 97, 1684-1704.	1.8	63
14	M-Like K+ Currents in Type I Hair Cells and Calyx Afferent Endings of the Developing Rat Utricle. Journal of Neuroscience, 2006, 26, 10253-10269.	3.6	108
15	Differences Between the Negatively Activating Potassium Conductances of Mammalian Cochlear and Vestibular Hair Cells. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 270-284.	1.8	24
16	Auditory Physiology: Listening with K+ Channels. Current Biology, 2003, 13, R767-R769.	3.9	5
17	Functional Development of Hair Cells. Current Topics in Developmental Biology, 2003, 57, 389-448.	2.2	51
18	Time Course and Extent of Mechanotransducer Adaptation in Mouse Utricular Hair Cells: Comparison With Frog Saccular Hair Cells. Journal of Neurophysiology, 2003, 90, 2676-2689.	1.8	68

2

RUTH ANNE EATOCK

#	Article	IF	CITATIONS
19	Mechanoelectrical and Voltage-Gated Ion Channels in Mammalian Vestibular Hair Cells. Audiology and Neuro-Otology, 2002, 7, 31-35.	1.3	21
20	Regional Analysis of Whole Cell Currents From Hair Cells of the Turtle Posterior Crista. Journal of Neurophysiology, 2002, 88, 3259-3278.	1.8	54
21	Major Potassium Conductance in Type I Hair Cells From Rat Semicircular Canals: Characterization and Modulation by Nitric Oxide. Journal of Neurophysiology, 2000, 84, 139-151.	1.8	85
22	Stimulus Processing by Type II Hair Cells in the Mouse Utricle. Annals of the New York Academy of Sciences, 1999, 871, 15-26.	3.8	28
23	Hair Cells in Mammalian Utricles. Otolaryngology - Head and Neck Surgery, 1998, 119, 172-181.	1.9	58
24	Postnatal Development of Type I and Type II Hair Cells in the Mouse Utricle: Acquisition of Voltage-Gated Conductances and Differentiated Morphology. Journal of Neuroscience, 1998, 18, 7487-7501.	3.6	215
25	Mechanoelectrical Transduction and Adaptation in Hair Cells of the Mouse Utricle, a Low-Frequency Vestibular Organ. Journal of Neuroscience, 1997, 17, 8739-8748.	3.6	101
26	Voltage Responses of Mouse Utricular Hair Cells to Injected Currents. Annals of the New York Academy of Sciences, 1996, 781, 71-84.	3.8	50