Manuel A S Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219439/publications.pdf

Version: 2024-02-01

76326 74163 6,624 140 40 citations h-index papers

75 g-index 146 146 146 9158 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	27.8	963
2	MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2735-2740.	7.1	672
3	The CUG codon is decodedin vivoas serine and not leucine inCandida albicans. Nucleic Acids Research, 1995, 23, 1481-1486.	14.5	244
4	MicroRNA Expression Variability in Human Cervical Tissues. PLoS ONE, 2010, 5, e11780.	2.5	155
5	Protein mistranslation: friend or foe?. Trends in Biochemical Sciences, 2014, 39, 355-362.	7.5	134
6	Driving change: the evolution of alternative genetic codes. Trends in Genetics, 2004, 20, 95-102.	6.7	133
7	Phenotypic heterogeneity promotes adaptive evolution. PLoS Biology, 2017, 15, e2000644.	5.6	128
8	Lack of microRNAâ€101 causes Eâ€cadherin functional deregulation through EZH2 upâ€regulation in intestinal gastric cancer. Journal of Pathology, 2012, 228, 31-44.	4.5	125
9	Comparative Evolutionary Genomics Unveils the Molecular Mechanism of Reassignment of the CTG Codon in Candida spp Genome Research, 2003, 13, 544-557.	5.5	111
10	Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics, 2008, 9, 524.	2.8	111
11	Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiology of Disease, 2014, 68, 26-36.	4.4	107
12	Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp Molecular Microbiology, 1999, 31, 937-947.	2.5	99
13	A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biology, 2007, 8, R206.	9.6	99
14	Impact of tRNA Modifications and tRNA-Modifying Enzymes on Proteostasis and Human Disease. International Journal of Molecular Sciences, 2018, 19, 3738.	4.1	93
15	Large Scale Comparative Codon-Pair Context Analysis Unveils General Rules that Fine-Tune Evolution of mRNA Primary Structure. PLoS ONE, 2007, 2, e847.	2.5	90
16	The genetic code of the fungal CTG clade. Comptes Rendus - Biologies, 2011, 334, 607-611.	0.2	90
17	Fungal Chitin Induces Trained Immunity in Human Monocytes during Cross-talk of the Host with Saccharomyces cerevisiae. Journal of Biological Chemistry, 2016, 291, 7961-7972.	3.4	90
18	Comparative context analysis of codon pairs on an ORFeome scale. Genome Biology, 2005, 6, R28.	9.6	85

#	Article	IF	CITATIONS
19	Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions. PLoS ONE, 2012, 7, e32507.	2.5	81
20	Protein translation in Plasmodium parasites. Trends in Parasitology, 2011, 27, 467-476.	3.3	79
21	Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11079-11084.	7.1	78
22	The nonâ€standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation?. Molecular Microbiology, 1997, 26, 423-431.	2.5	77
23	Candida albicans CUG Mistranslation Is a Mechanism To Create Cell Surface Variation. MBio, 2013, 4, .	4.1	77
24	Discovery and function of transfer <scp>RNA</scp> â€derived fragments and their role in disease. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1423.	6.4	76
25	Polyethyleneimine and polyethyleneimine-based nanoparticles: novel bacterial and yeast biofilm inhibitors. Journal of Medical Microbiology, 2014, 63, 1167-1173.	1.8	70
26	Evolution of the genetic code in yeasts. Yeast, 2006, 23, 203-213.	1.7	67
27	mRNA secondary structure optimization using a correlated stem–loop prediction. Nucleic Acids Research, 2013, 41, e73-e73.	14.5	67
28	Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genomics, 2009, 10, 195.	2.8	65
29	Protein synthesis inhibition and GADD34 control IFNâ€Î² heterogeneous expression in response toÂdsRNA. EMBO Journal, 2017, 36, 761-782.	7.8	64
30	tRNA Deregulation and Its Consequences inÂCancer. Trends in Molecular Medicine, 2019, 25, 853-865.	6.7	63
31	Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review. IScience, 2021, 24, 102001.	4.1	63
32	Cancer syndromes and therapy by stop-codon readthrough. Trends in Molecular Medicine, 2012, 18, 667-678.	6.7	61
33	RUN and FYVE domain–containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4. Journal of Cell Biology, 2015, 210, 1133-1152.	5.2	58
34	The RNA-Binding Protein hnRNP K Mediates the Effect of BDNF on Dendritic mRNA Metabolism and Regulates Synaptic NMDA Receptors in Hippocampal Neurons. ENeuro, 2017, 4, ENEURO.0268-17.2017.	1.9	57
35	EuGene: maximizing synthetic gene design for heterologous expression. Bioinformatics, 2012, 28, 2683-2684.	4.1	54
36	Ethanol Exposure Induces Upregulation of Specific MicroRNAs in Zebrafish Embryos. Toxicological Sciences, 2012, 127, 18-28.	3.1	53

3

#	Article	IF	Citations
37	Surfactants as Microbicides and Contraceptive Agents: A Systematic In Vitro Study. PLoS ONE, 2008, 3, e2913.	2.5	52
38	The effect of antibacterial and non-antibacterial compounds alone or associated with antifugals upon fungi. Frontiers in Microbiology, 2015, 6, 669.	3.5	50
39	A Genetic Code Alteration Is a Phenotype Diversity Generator in the Human Pathogen Candida albicans. PLoS ONE, 2007, 2, e996.	2.5	45
40	Critical roles for a genetic code alteration in the evolution of the genus Candida. EMBO Journal, 2007, 26, 4555-4565.	7.8	43
41	Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14091-14096.	7.1	43
42	MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5727-5736.	7.1	39
43	All you need to know about sperm RNAs. Human Reproduction Update, 2021, 28, 67-91.	10.8	39
44	A Gene from the Mesophilic Bacterium Dehalococcoides ethenogenes Encodes a Novel Mannosylglycerate Synthase. Journal of Bacteriology, 2004, 186, 4075-4084.	2.2	36
45	Development of the genetic code: Insights from a fungal codon reassignment. FEBS Letters, 2010, 584, 334-341.	2.8	36
46	Analysis of the Effects of Sex Hormone Background on the Rat Choroid Plexus Transcriptome by cDNA Microarrays. PLoS ONE, 2013, 8, e60199.	2.5	34
47	Species-Specific Codon Context Rules Unveil Non-Neutrality Effects of Synonymous Mutations. PLoS ONE, 2011, 6, e26817.	2.5	34
48	Efficient translation of the UAG termination codon in Candida species. Current Genetics, 1990, 17, 487-491.	1.7	33
49	Conserved and highly expressed tRNA derived fragments in zebrafish. BMC Molecular Biology, 2015, 16, 22.	3.0	33
50	Emerging Roles of tRNAs in RNA Virus Infections. Trends in Biochemical Sciences, 2020, 45, 794-805.	7. 5	33
51	Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants, 2021, 10, 289.	5.1	33
52	Low Complexity Regions behave as tRNA sponges to help coâ€ŧranslational folding of plasmodial proteins. FEBS Letters, 2010, 584, 448-454.	2.8	32
53	Intrastrain genomic and phenotypic variability of the commercial <i>Saccharomyces cerevisiae</i> strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Research, 2015, 15, fov063.	2.3	32
54	Low level genome mistranslations deregulate the transcriptome and translatome and generate proteotoxic stress in yeast. BMC Biology, 2012, 10, 55.	3.8	31

#	Article	IF	CITATIONS
55	Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity. Current Opinion in Microbiology, 2009, 12, 631-637.	5.1	30
56	Systems biology of infectious diseases: a focus on fungal infections. Immunobiology, 2011, 216, 1212-1227.	1.9	30
57	Selective Inhibition of an Apicoplastic Aminoacylâ€ŧRNA Synthetase from <i>Plasmodium falciparum</i> ChemBioChem, 2013, 14, 499-509.	2.6	30
58	Codon misreading tRNAs promote tumor growth in mice. RNA Biology, 2018, 15, 1-14.	3.1	30
59	Adaptive Mistranslation Accelerates the Evolution of Fluconazole Resistance and Induces Major Genomic and Gene Expression Alterations in Candida albicans. MSphere, 2017, 2, .	2.9	29
60	Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover. PLoS Biology, 2015, 13, e1002291.	5.6	29
61	Antimicrobial coatings based on chitosan to prevent implant-associated infections: A systematic review. IScience, 2021, 24, 103480.	4.1	29
62	Codon reassignment in Candida species: An evolutionary conundrum. Biochimie, 1996, 78, 993-999.	2.6	28
63	The role of micropeptides in biology. Cellular and Molecular Life Sciences, 2021, 78, 3285-3298.	5.4	28
64	The Relative Importance of Shear Forces and Surface Hydrophobicity on Biofilm Formation by Coccoid Cyanobacteria. Polymers, 2020, 12, 653.	4.5	27
65	The Use of Probiotics to Fight Biofilms in Medical Devices: A Systematic Review and Meta-Analysis. Microorganisms, 2021, 9, 27.	3.6	27
66	Candida albicansand three otherCandidaspecies contain an elongation factor structurally and functionally analogous to elongation factor 3. FEMS Microbiology Letters, 1991, 80, 45-50.	1.8	25
67	The Candida albicans CUG-decoding ser-tRNA has an atypical anticodon stem-loop structure 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 293, 1039-1053.	4.2	25
68	Presence and coding properties of 2′-O-methyl-5-carbamoylmethyluridine (ncm5Um) in the wobble position of the anticodon of tRNALeu(U*AA) from brewer's yeast. FEBS Letters, 1992, 314, 381-385.	2.8	24
69	Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1977-1986.	2.4	24
70	Non-Standard Genetic Codes Define New Concepts for Protein Engineering. Life, 2015, 5, 1610-1628.	2.4	24
71	Potential Impact of Flow Cytometry Antimicrobial Susceptibility Testing on the Clinical Management of Gram-Negative Bacteremia Using the FASTinov® Kit. Frontiers in Microbiology, 2017, 8, 2455.	3.5	23
72	New insights into mRNA decoding — implications for heterologous protein synthesis. Trends in Biotechnology, 1993, 11, 500-505.	9.3	22

#	Article	IF	CITATIONS
73	High-throughput molecular profiling of a P-cadherin overexpressing breast cancer model reveals new targets for the anti-cancer bacterial protein azurin. International Journal of Biochemistry and Cell Biology, 2014, 50, 1-9.	2.8	22
74	Differences in the expression pattern of HCN isoforms among mammalian tissues: sources and implications. Molecular Biology Reports, 2014, 41, 297-307.	2.3	22
75	Involvement of Yeast HSP90 Isoforms in Response to Stress and Cell Death Induced by Acetic Acid. PLoS ONE, 2013, 8, e71294.	2.5	21
76	A Fluorescenceâ€Based Sensor Assay that Monitors General Protein Aggregation in Human Cells. Biotechnology Journal, 2018, 13, e1700676.	3 . 5	21
77	Detection and identification of fungal species by electronic nose technology: A systematic review. Fungal Biology Reviews, 2021, 37, 59-70.	4.7	21
78	TRNA mutations that affect decoding fidelity deregulate development and the proteostasis network in zebrafish. RNA Biology, 2014, 11, 1199-1213.	3.1	20
79	Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and cAMP-Dependent Modulation of Exocytosis in Cultured Rat Lactotrophs. Journal of Neuroscience, 2014, 34, 15638-15647.	3.6	20
80	In Vitro Ischemia Triggers a Transcriptional Response to Down-Regulate Synaptic Proteins in Hippocampal Neurons. PLoS ONE, 2014, 9, e99958.	2.5	20
81	Genotyping of <i>Saccharomyces cerevisiae</i> strains by interdelta sequence typing using automated microfluidics. Electrophoresis, 2011, 32, 1447-1455.	2.4	19
82	<i>De novo</i> sequencing of proteins by mass spectrometry. Expert Review of Proteomics, 2020, 17, 595-607.	3.0	19
83	Antibacterial Action Mechanisms of Honey: Physiological Effects of Avocado, Chestnut, and Polyfloral Honey upon Staphylococcus aureus and Escherichia coli. Molecules, 2020, 25, 1252.	3.8	19
84	Experimental Assessment of the Performance of Two Marine Coatings to Curb Biofilm Formation of Microfoulers. Coatings, 2020, 10, 893.	2.6	18
85	Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. European Journal of Human Genetics, 2014, 22, 1085-1092.	2.8	17
86	Evaluation of Physiological Effects Induced by Manuka Honey Upon Staphylococcus aureus and Escherichia coli. Microorganisms, 2019, 7, 258.	3.6	17
87	Unveiling the Antifouling Performance of Different Marine Surfaces and Their Effect on the Development and Structure of Cyanobacterial Biofilms. Microorganisms, 2021, 9, 1102.	3.6	17
88	Effect of Lactobacillus plantarum Biofilms on the Adhesion of Escherichia coli to Urinary Tract Devices. Antibiotics, 2021, 10, 966.	3.7	17
89	Yeast proteome map (update 2006). Proteomics, 2007, 7, 1117-1120.	2.2	16
90	Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics, 2011, 12, 201.	2.8	16

#	Article	IF	CITATIONS
91	Fluorescence In Vivo Hybridization (FIVH) for Detection of Helicobacter pylori Infection in a C57BL/6 Mouse Model. PLoS ONE, 2016, 11, e0148353.	2.5	16
92	The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons. Frontiers in Microbiology, 2016, 7, 401.	3. 5	15
93	Guanabenz inhibits TLR9 signaling through a pathway that is independent of eIF2 $\hat{l}\pm$ dephosphorylation by the GADD34/PP1c complex. Science Signaling, 2018, 11, .	3.6	15
94	Human cells adapt to translational errors by modulating protein synthesis rate and protein turnover. RNA Biology, 2020, 17, 135-149.	3.1	15
95	tRNA-modifying enzyme mutations induce codon-specific mistranslation and protein aggregation in yeast. RNA Biology, 2021, 18, 563-575.	3.1	15
96	Optimizing CNT Loading in Antimicrobial Composites for Urinary Tract Application. Applied Sciences (Switzerland), 2021, 11, 4038.	2.5	15
97	The Yeast PNC1 Longevity Gene Is Up-Regulated by mRNA Mistranslation. PLoS ONE, 2009, 4, e5212.	2.5	15
98	Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Research Reviews, 2020, 62, 101119.	10.9	14
99	Transfer RNA profiling: A new method for the identification of pathogenicCandida species. Yeast, 1994, 10, 625-636.	1.7	13
100	Yeast as a model organism for studying the evolution of nonstandard genetic codes. Briefings in Functional Genomics & Proteomics, 2004, 3, 35-46.	3.8	12
101	Dre-miR-2188 Targets Nrp2a and Mediates Proper Intersegmental Vessel Development in Zebrafish Embryos. PLoS ONE, 2012, 7, e39417.	2.5	11
102	Differential gene expression analysis in Enchytraeus albidus exposed to natural and chemical stressors at different exposure periods. Ecotoxicology, 2012, 21, 213-224.	2.4	11
103	Development of Chitosan-Based Surfaces to Prevent Single- and Dual-Species Biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Molecules, 2021, 26, 4378.	3.8	11
104	Evaluation of the genetic risk for COVID-19 outcomes in COPD and differences among worldwide populations. PLoS ONE, 2022, 17, e0264009.	2.5	11
105	beta,a novel repetitive DNA element associated with tRNA genes in the pathogenic yeastCandida albicans. Molecular Microbiology, 1997, 25, 229-236.	2.5	10
106	Unveiling the Synergistic Interaction Between Liposomal Amphotericin B and Colistin. Frontiers in Microbiology, 2016, 7, 1439.	3 . 5	10
107	Developing New Marine Antifouling Surfaces: Learning from Single-Strain Laboratory Tests. Coatings, 2021, 11, 90.	2.6	10
108	Epidemiology and susceptibility profile to classic antifungals and over-the-counter products of Malassezia clinical isolates from a Portuguese University Hospital: a prospective study. Journal of Medical Microbiology, 2019, 68, 778-784.	1.8	10

#	Article	IF	Citations
109	Next-Generation Sequencing of miRNAs with Roche 454 GS-FLX Technology: Steps for a Successful Application. Methods in Molecular Biology, 2012, 822, 189-204.	0.9	9
110	New Insights Regarding Yeast Survival following Exposure to Liposomal Amphotericin B. Antimicrobial Agents and Chemotherapy, 2015, 59, 6181-6187.	3.2	9
111	Improving the accuracy of recombinant protein production through integration of bioinformatics, statistical and mass spectrometry methodologies. FEBS Journal, 2015, 282, 769-787.	4.7	9
112	The association between initial adhesion and cyanobacterial biofilm development. FEMS Microbiology Ecology, 2021, 97, .	2.7	9
113	Integration of segmented regression analysis with weighted gene correlation network analysis identifies genes whose expression is remodeled throughout physiological aging in mouse tissues. Aging, 2021, 13, 18150-18190.	3.1	9
114	Codon-triplet context unveils unique features of the Candida albicans protein coding genome. BMC Genomics, 2007, 8, 444.	2.8	8
115	The Role of MicroRNAs in Proteostasis Decline and Protein Aggregation during Brain and Skeletal Muscle Aging. International Journal of Molecular Sciences, 2022, 23, 3232.	4.1	8
116	The Candida albicans gene encoding the cytoplasmic leucyl-tRNA synthetase: implications for the evolution of CUG codon reassignment. Gene, 2001, 275, 133-140.	2.2	7
117	Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment inCandida albicans. Yeast, 2001, 18, 313-322.	1.7	7
118	Novel Method for Evaluating <i>In Vitro</i> Activity of Anidulafungin in Combination with Amphotericin B or Azoles. Journal of Clinical Microbiology, 2012, 50, 2748-2754.	3.9	7
119	tRNAs as a Driving Force of Genome Evolution in Yeast. Frontiers in Microbiology, 2021, 12, 634004.	3.5	7
120	Molecular reconstruction of a fungal genetic code alteration. RNA Biology, 2013, 10, 968-980.	3.1	6
121	Upregulation of tRNA-Ser-AGA-2-1 Promotes Malignant Behavior in Normal Bronchial Cells. Frontiers in Molecular Biosciences, 2022, 9, 809985.	3.5	6
122	Extant Variations in the Genetic Code. , 2004, , 183-200.		5
123	Purification, crystallization and preliminary X-ray diffraction analysis of the seryl-tRNA synthetase fromCandida albicans. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 153-156.	0.7	5
124	A Flow Cytometric and Computational Approaches to Carbapenems Affinity to the Different Types of Carbapenemases. Frontiers in Microbiology, 2016, 7, 1259.	3.5	5
125	Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast. PLoS ONE, 2018, 13, e0202402.	2.5	5
126	The role of non-standard translation in <i>Candida albicans</i> pathogenesis. FEMS Yeast Research, 2021, 21, .	2.3	5

#	Article	IF	Citations
127	Stop codon decoding inCandida albicans: from non-standard back to standard. Yeast, 2002, 19, 727-733.	1.7	4
128	Plasmodium apicoplast tyrosyl-tRNA synthetase recognizes an unusual, simplified identity set in cognate tRNATyr. PLoS ONE, 2018, 13, e0209805.	2.5	4
129	Assessing the impact of Medical Microbiology classes using active strategies on short- and long-term retention on medical students: an innovative study. Brazilian Journal of Microbiology, 2019, 50, 165-173.	2.0	3
130	Computational and Statistical Methodologies for ORFeome Primary Structure Analysis. Methods in Molecular Biology, 2007, 395, 449-462.	0.9	3
131	Flow Cytometry in Microbiology: The Reason and the Need. Series in Bioengineering, 2017, , 153-170.	0.6	3
132	EuGene: maximizing synthetic gene design for heterologous expression. Bioinformatics, 2016, 32, 1120-1120.	4.1	2
133	<i>Saccharomyces cerevisiae</i> as a Model to Confirm the Ability of FTIR to Evaluate the Presence of Protein Aggregates. Spectral Analysis Review, 2018, 06, 1-11.	0.2	2
134	Analysing the Evolution of Repetitive Strands in Genomes. Lecture Notes in Computer Science, 2009, , $1047-1054$.	1.3	2
135	Exploiting Codon-Triplets Association for Genome Primary Structure Analysis. , 2008, , .		O
136	Studying the Evolution of Codon Context in Conserved Gene Sequences. , 2008, , .		0
137	An integrative approach for codon repeats evolutionary analyses. International Journal of Data Mining and Bioinformatics, 2012, 6, 369.	0.1	O
138	An Application for Studying Tandem Repeats in Orthologous Genes. Advances in Intelligent and Soft Computing, 2010, , 109-115.	0.2	0
139	The Genetic Code of the Candida CTG Clade. , 0, , 45-55.		0
140	Computational and Statistical Methodologies for ORFeome Primary Structure Analysis., 0,, 449-462.		0