Danilo Gambacurta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219215/publications.pdf

Version: 2024-02-01

	471509	552781
754	17	26
citations	h-index	g-index
59	59	458
docs citations	times ranked	citing authors
	citations 59	754 17 citations h-index 59 59

#	Article	IF	CITATIONS
1	Quenching of Gamow-Teller strengths and two-particle–two-hole configurations. Physical Review C, 2022, 105, .	2.9	5
2	Proton-neutron pairing and binding energies of nuclei close to the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mo>=<td>> 219ml:m</td><td>ıi>ℤ</td></mml:mo></mml:mrow></mml:math>	> 219 ml:m	ıi> ℤ
3	Nuclear Matrix Elements for Heavy Ion Sequential Double Charge Exchange Reactions. Universe, 2021, 7, 98.	2.5	20
4	Beyond-mean-field effects on the symmetry energy and its slope from the low-lying dipole response of Ni68. Physical Review C, 2020, 101, .	2.9	11
5	display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Ca</mml:mi></mml:mrow><mml:mpr /><mml:none /><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:none </mml:mpr </mml:mmultiscripts></mml:mrow> and <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>escripts 7.8</td><td>22</td></mml:math>	escripts 7.8	22
6	display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mprow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>0.4</td><td>0</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mprow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	0.4	0
7	Recent applications of the subtracted SRPA approximation. EPJ Web of Conferences, 2019, 223, 01020.	0.3	O
8	Soft breathing modes in neutron-rich nuclei with the subtracted second random-phase approximation. Physical Review C, 2019, 100, .	2.9	4
9	Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random–phase approximation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 777, 163-168.	4.1	23
10	Subtraction method in the Second Random Phase Approximation. Journal of Physics: Conference Series, 2018, 966, 012050.	0.4	0
11	Isovector and isoscalar proton-neutron pairing in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mo>><td>:m୭.9<mm< td=""><td>ıl:mi&Z</td></mm<></td></mml:mo></mml:mrow></mml:math>	:m ୭. 9 <mm< td=""><td>ıl:mi&Z</td></mm<>	ıl:mi&Z
12	Beyond-mean-field effective masses in the nuclear Fermi liquid from axial breathing modes. Physical Review C, $2018, 98, .$	2.9	9
13	Systematic study of giant quadrupole resonances with the subtracted second random-phase approximation: Beyond-mean-field centroids and fragmentation. Physical Review C, 2018, 98, .	2.9	9
14	Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian. Physical Review C, 2017, 95, .	2.9	17
15	Isovector and isoscalar pairing in odd–odd N = Z nuclei within a quartet approach. Progress of Theoretical and Experimental Physics, 2017, 2017, .	6.6	5
16	Interplay between proton-neutron pairing and deformation in self-conjugated medium mass nuclei. EPJ Web of Conferences, 2016, 117, 04005.	0.3	0
17	Second RPA calculations with the Skyrme and Gogny interactions. European Physical Journal A, 2016, 52, $1.$	2.5	14
18	Nuclear excitations as coupled one and two random-phase-approximation modes. Physical Review C, $2016, 93, .$	2.9	10

#	Article	IF	CITATIONS
19	Beyond-mean-field corrections within the second random-phase approximation. Journal of Physics: Conference Series, 2016, 724, 012018.	0.4	0
20	Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional. Physical Review C, 2015, 92, .	2.9	51
21	Proton-neutron pairing and alpha-type condensation in nuclei. AIP Conference Proceedings, 2015, , .	0.4	O
22	Proton–neutron pairing in N = Z nuclei: Quartetting versus pair condensation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 751, 348-351.	4.1	30
23	Effects of deformation on the coexistence between neutron-proton and particle-like pairing in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo>nuclei. Physical Review C. 2015. 91</mml:mrow></mml:math>	2.9 ₹mml:mi	> <mark>18</mark> /mml:m
24	Nuclear pairing correlations within and beyond HFB-BCS models. Journal of Physics: Conference Series, 2015, 580, 012054.	0.4	4
25	Pairing and specific heat in sup>161,162 / sup>Dy and sup>171,172 / sup>Yb isotopes. Journal of Physics: Conference Series, 2014, 533, 012012.	0.4	O
26	Pairing and specific heat in hot nuclei. Physical Review C, 2013, 88, .	2.9	27
27	Quantal corrections to mean-field dynamics including pairing. Physical Review C, 2013, 87, .	2.9	22
28	Low-lying dipole response in the stable [sup 40,48]Ca nuclei within the second random-phase approximation. , 2012 , , .		0
29	Second random-phase approximation with the Gogny force: First applications. Physical Review C, 2012, 86, .	2.9	31
30	Thermodynamical properties of small superconductors with a fixed number of particles. Physical Review C, 2012, 85, .	2.9	15
31	Description of two-particle transfer in superfluid systems. Physical Review C, 2012, 86, .	2.9	9
32	Projected quasiparticle perturbation theory. Physical Review C, 2012, 86, .	2.9	18
33	Pairing and thermodynamics properties of finite-systems with fixed number of particles. EPJ Web of Conferences, 2012, 38, 04004.	0.3	O
34	Determination of local energy density functionals from Brueckner-Hartree-Fock calculations. Physical Review C, 2011, 84, .	2.9	23
35	Skyrme second random-phase approximation description of low-lying dipole states in 48Ca isotope. Journal of Physics: Conference Series, 2011, 336, 012011.	0.4	O
36	Giant and Pygmy Dipole Resonances in neutron-rich nuclei: their excitation via Coulomb and nuclear fields. Journal of Physics: Conference Series, 2011, 267, 012006.	0.4	6

#	Article	IF	CITATIONS
37	Second RPA with Skyrme Interaction. Journal of Physics: Conference Series, 2011, 267, 012052.	0.4	0
38	Collective excitations in Random Phase Approximation and beyond. Journal of Physics: Conference Series, 2011, 267, 012047.	0.4	0
39	The Landau-Migdal parameters from the Brueckner theory. Physics of Atomic Nuclei, 2011, 74, 1424-1434.	0.4	5
40	Iterative variational approach to finite many-body systems. Physical Review B, 2011, 83, .	3.2	11
41	Excitations of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear fields. Physical Review C, 2011, 84, .	2.9	43
42	Low-lying dipole response in the stable <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mn>40</mml:mn><mml:mo>,</mml:mo><mml:mn>48</mml:mn>nuclei with the second random-phase approximation. Physical Review C, 2011, 84, .</mml:msup></mml:math>	ısup ^{3:2} /mm	ıl:math>Ca
43	Residual interaction in second random-phase approximation with density-dependent forces: rearrangement terms. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 035103.	3.6	30
44	On the nature of the Dipole Pygmy Resonance. , 2011, , .		1
45	Excitation of pygmy dipole resonance in neutron-rich nuclei via Coulomb and nuclear fields. Pramana - Journal of Physics, 2010, 75, 73-80.	1.8	9
46	Extended second random phase approximation applied to metallic clusters. Physical Review B, 2010, 81, .	3.2	9
47	Collective nuclear excitations with Skyrme-second random-phase approximation. Physical Review C, $2010,81,.$	2.9	56
48	COLLECTIVE MODES WITHIN SKYRME-SECOND RPA. Modern Physics Letters A, 2010, 25, 1919-1922.	1.2	0
49	Second random phase approximation studies in metallic clusters. Physical Review B, 2009, 79, .	3.2	15
50	Self-consistent extension of random-phase approximation enlarged beyond particle-hole configurations. Physical Review C, 2009, 80, .	2.9	8
51	Multiphonon excitations and pygmy resonances in tin isotopes. Physical Review C, 2009, 79, .	2.9	45
52	Collective excitations in metallic clusters within the second random phase approximation. Journal of Physics: Conference Series, 2009, 168, 012012.	0.4	4
53	Pygmy resonances in Sn isotopes within a microscopic multiphonon approach. Journal of Physics: Conference Series, 2009, 168, 012014.	0.4	0
54	Particle-hole excitations within a self-consistent random-phase approximation. Physical Review B, 2008, 77, .	3.2	12

#	Article	IF	CITATIONS
55	Configuration interaction study of single and double dipole plasmon excitations in Na8. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 349, 345-349.	2.1	6
56	Extension of the second random-phase approximation. Physical Review C, 2006, 73, .	2.9	16
57	Solvable many-level pairing model in a boson formalism. Physical Review C, 2006, 73, .	2.9	7
58	Bosonic Treatment of Pairing Correlations in a Solvable Many-Level Model. AIP Conference Proceedings, 2005, , .	0.4	0
59	Pairing correlations in finite nuclear systems. Physics of Atomic Nuclei, 2004, 67, 1776-1780.	0.4	0