Weiyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12190587/publications.pdf

Version: 2024-02-01

136950 302126 4,990 39 32 39 h-index citations g-index papers 39 39 39 5680 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chinese Journal of Catalysis, 2022, 43, 110-115.	14.0	37
2	Local Coordination Regulation through Tuning Atomicâ€Scale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2202084.	21.0	57
3	Shortâ€Range Diffusion Enables General Synthesis of Mediumâ€Entropy Alloy Aerogels. Advanced Materials, 2022, 34, .	21.0	74
4	Ultrathin Metallic NbS ₂ Nanosheets with Unusual Intercalation Mechanism for Ultraâ€Stable Potassiumâ€Ion Storage. Advanced Functional Materials, 2022, 32, .	14.9	15
5	WO <i>>_{<}</i> >>éSurface Decorated PtNi@Pt Dendritic Nanowires as Efficient pHâ€Universal Hydrogen Evolution Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003192.	19.5	82
6	Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Letters, 2021, 21, 492-499.	9.1	190
7	A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019.	9.5	59
8	Ni _{1â^'} <i>_x</i> Co <i>_x</i> Se ₂ C/ZnIn ₂ 5 _{4 Hybrid Nanocages with Strong 2D/2D Heteroâ€Interface Interaction Enable Efficient H₂â€Releasing Photocatalysis. Advanced Functional Materials, 2021, 31, 2100923.}	· 14.9	104
9	Au Clusters on Pd Nanosheets Selectively Switch the Pathway of Ethanol Electrooxidation: Amorphous/Crystalline Interface Matters. Advanced Energy Materials, 2021, 11, 2100187.	19.5	113
10	One Nanometer PtIr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production. Journal of the American Chemical Society, 2021, 143, 10822-10827.	13.7	95
11	Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nature Communications, 2021, 12, 4412.	12.8	128
12	Emerging Dualâ€Atomicâ€Site Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	21.0	226
13	Subâ€Monolayer YO <i></i> /i>/MoO <i>_x</i> on Ultrathin Pt Nanowires Boosts Alcohol Oxidation Electrocatalysis. Advanced Materials, 2021, 33, e2103762.	21.0	86
14	An in-situ NH4+-etched strategy for anchoring atomic Mo site on ZnIn2S4 hierarchical nanotubes for superior hydrogen photocatalysis. Science China Chemistry, 2021, 64, 1716-1722.	8.2	17
15	Irâ€Based Alloy Nanoflowers with Optimized Hydrogen Binding Energy as Bifunctional Electrocatalysts for Overall Water Splitting. Small Methods, 2020, 4, 1900129.	8.6	93
16	Metal Single Atom Strategy Greatly Boosts Photocatalytic Methyl Activation and C–C Coupling for the Coproduction of High-Value-Added Multicarbon Compounds and Hydrogen. ACS Catalysis, 2020, 10, 9109-9114.	11,2	47
17	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	19.5	560
18	A Three-Dimensional Carbon Framework Constructed by N/S Co-doped Graphene Nanosheets with Expanded Interlayer Spacing Facilitates Potassium Ion Storage. ACS Energy Letters, 2020, 5, 1653-1661.	17.4	202

#	Article	IF	CITATIONS
19	Ultrathin RuRh@(RuRh)O ₂ core@shell nanosheets as stable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 15746-15751.	10.3	24
20	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie, 2019, 131, 14322-14326.	2.0	28
21	Thermolysis of Noble Metal Nanoparticles into Electronâ€Rich Phosphorusâ€Coordinated Noble Metal Single Atoms at Low Temperature. Angewandte Chemie - International Edition, 2019, 58, 14184-14188.	13.8	136
22	Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chemical Science, 2019, 10, 5898-5905.	7.4	127
23	Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy and Environmental Science, 2019, 12, 1605-1612.	30.8	349
24	Electronic-Structure Tuning of Water-Splitting Nanocatalysts. Trends in Chemistry, 2019, 1, 259-271.	8.5	99
25	Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Advanced Materials, 2019, 31, e1805833.	21.0	223
26	Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small, 2019, 15, e1804212.	10.0	135
27	A Universal Strategy for Intimately Coupled Carbon Nanosheets/MoM Nanocrystals (M = P, S, C, and O) Hierarchical Hollow Nanospheres for Hydrogen Evolution Catalysis and Sodiumâ€lon Storage. Advanced Materials, 2018, 30, e1706085.	21.0	147
28	Black Phosphorus Nanosheets as a Neuroprotective Nanomedicine for Neurodegenerative Disorder Therapy. Advanced Materials, 2018, 30, 1703458.	21.0	266
29	Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Central Science, 2018, 4, 1244-1252.	11.3	196
30	Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities. CheM, 2018, 4, 2054-2083.	11.7	225
31	Rational Design of Hierarchical TiO ₂ /Epitaxially Aligned MoS ₂ –Carbon Coupled Interface Nanosheets Core/Shell Architecture for Ultrastable Sodiumâ€lon and Lithium–Sulfur Batteries. Small Methods, 2018, 2, 1800119.	8.6	49
32	Wrinkled Rh ₂ P Nanosheets as Superior pHâ€Universal Electrocatalysts for Hydrogen Evolution Catalysis. Advanced Energy Materials, 2018, 8, 1801891.	19.5	116
33	Iridiumâ€Based Multimetallic Porous Hollow Nanocrystals for Efficient Overallâ€Waterâ€Splitting Catalysis. Advanced Materials, 2017, 29, 1703798.	21.0	460
34	3D Space-Confined Pyrolysis of Double-Network Aerogels Containing In-Fe Cyanogel and Polyaniline: A New Approach to Hierarchically Porous Carbon with Exclusive Fe-N <i> _x </i> Active Sites for Oxygen Reduction Catalysis. Small Methods, 2017, 1, 1700167.	8.6	85
35	Cyanogel-derived nanoporous Sn–Fe–Ni ternary oxide network for high-capacity and long-life lithium storage. Journal of Alloys and Compounds, 2017, 691, 250-254.	5.5	9
36	Cyano-bridged coordination polymer hydrogel-derived Sn–Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance. Nanoscale, 2016, 8, 9828-9836.	5.6	35

WEIYU ZHANG

#	Article	IF	CITATIONS
37	Hydrogel-Derived Nanoporous Sn–In–Ni Ternary Alloy Network for High-Performance Lithium-Storage. Electrochimica Acta, 2016, 210, 530-538.	5.2	19
38	Cyano-bridged coordination polymer gel as a precursor to a nanoporous In2O3–Co3O4 hybrid network for high-capacity and cycle-stable lithium storage. New Journal of Chemistry, 2015, 39, 8249-8253.	2.8	14
39	Cyanogelâ€Derived Formation of 3 D Nanoporous SnO ₂ –M _{<i>x</i>} O _{<i>y</i>} (M=Ni, Fe, Co) Hybrid Networks for Highâ€Performance Lithium Storage. ChemSusChem, 2015, 8, 131-137.	6.8	63