
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12190485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast Alpha Activity in EEG of Patients With Alzheimer's Disease Is Paralleled by Changes in Cognition and Cholinergic Markers During Encapsulated Cell Biodelivery of Nerve Growth Factor. Frontiers in Aging Neuroscience, 2022, 14, 756687.	3.4	3
2	The Long-Term Response to High-Dose Spinal Cord Stimulation in Patients With Failed Back Surgery Syndrome After Conversion From Standard Spinal Cord Stimulation: An Effectiveness and Prediction Study. Neuromodulation, 2021, 24, 546-555.	0.8	14
3	Effects of Spinal Cord Stimulation on Heart Rate Variability in Patients With Failed Back Surgery Syndrome: Comparison Between a 2â€lead ECG and a Wearable Device. Neuromodulation, 2021, 24, 512-519.	0.8	11
4	A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2021, 1331, 167-191.	1.6	10
5	The Link Between Spinal Cord Stimulation and the Parasympathetic Nervous System in Patients With Failed Back Surgery Syndrome. Neuromodulation, 2021, , .	0.8	7
6	Identifying goals in patients with chronic pain: A European survey. European Journal of Pain, 2021, 25, 1959-1970.	2.8	21
7	Exploration of the Supraspinal Hypotheses about Spinal Cord Stimulation and Dorsal Root Ganglion Stimulation: A Systematic Review. Journal of Clinical Medicine, 2021, 10, 2766.	2.4	14
8	Acute effect of spinal cord stimulation on autonomic nervous system function in patients with heart failure. Journal of Applied Biomedicine, 2021, 19, 133-141.	1.7	3
9	High-dose spinal cord stimulation for patients with failed back surgery syndrome: a multicenter effectiveness and prediction study. Pain, 2021, 162, 582-590.	4.2	37
10	Amyloid-Beta Peptides and Activated Astroglia Impairs Proliferation of Nerve Growth Factor Releasing Cells In Vitro: Implication for Encapsulated Cell Biodelivery-Mediated AD Therapy. Cells, 2021, 10, 2834.	4.1	2
11	Modulation of Spinal Nociceptive Transmission by Sub-Sensory Threshold Spinal Cord Stimulation in Rats After Nerve Injury. Neuromodulation, 2020, 23, 36-45.	0.8	7
12	Cortical Mapping in Conventional and High Dose Spinal Cord Stimulation: An Exploratory Power Spectrum and Functional Connectivity Analysis With Electroencephalography. Neuromodulation, 2020, 23, 74-81.	0.8	12
13	Magnetic Resonance Imaging Exploration of the Human Brain During 10 kHz Spinal Cord Stimulation for Failed Back Surgery Syndrome: A Resting State Functional Magnetic Resonance Imaging Study. Neuromodulation, 2020, 23, 46-55.	0.8	23
14	Mechanism of dorsal root ganglion stimulation for pain relief in painful diabetic polyneuropathy is not dependent on GABA release in the dorsal horn of the spinal cord. CNS Neuroscience and Therapeutics, 2020, 26, 136-143.	3.9	28
15	Dorsal Root Ganglion Stimulation in Experimental Painful Diabetic Polyneuropathy: Delayed Wash-Out of Pain Relief After Low-Frequency (1Hz) Stimulation. Neuromodulation, 2020, 23, 177-184.	0.8	23
16	Effects of spinal cord stimulation on voxel-based brain morphometry in patients with failed back surgery syndrome. Clinical Neurophysiology, 2020, 131, 2578-2587.	1.5	15
17	The cholinergic system in subtypes of Alzheimer's disease: an in vivo longitudinal MRI study. Alzheimer's Research and Therapy, 2020, 12, 51.	6.2	41
18	A Regions of Interest Voxelâ€Based Morphometry Study of the Human Brain During Highâ€Frequency Spinal Cord Stimulation in Patients With Failed Back Surgery Syndrome. Pain Practice, 2020, 20, 878-888.	1.9	10

#	Article	IF	CITATIONS
19	Effects of spinal cord stimulation on heart rate variability in patients with Failed Back Surgery Syndrome. PLoS ONE, 2019, 14, e0219076.	2.5	15
20	One Hundred Eleven Percutaneous Balloon Compressions for Trigeminal Neuralgia in a Cohort of 66 Patients with Multiple Sclerosis. Operative Neurosurgery, 2019, 17, 452-459.	0.8	7
21	The Impact of Electrical Charge Delivery on Inhibition of Mechanical Hypersensitivity in Nerve-Injured Rats by Sub-Sensory Threshold Spinal Cord Stimulation. Neuromodulation, 2019, 22, 163-171.	0.8	16
22	The influence of High Dose Spinal Cord Stimulation on the descending pain modulatory system in patients with failed back surgery syndrome. NeuroImage: Clinical, 2019, 24, 102087.	2.7	9
23	Spinal cord stimulation prevents paclitaxel-induced mechanical and cold hypersensitivity and modulates spinal gene expression in rats. Pain Reports, 2019, 4, e785.	2.7	25
24	Dependence of c-fos Expression on Amplitude of High-Frequency Spinal Cord Stimulation in a Rodent Model. Neuromodulation, 2019, 22, 172-178.	0.8	10
25	Supraspinal Mechanisms of Spinal Cord Stimulation for Modulation of Pain. Anesthesiology, 2019, 130, 651-665.	2.5	45
26	Effectiveness of dorsal root ganglion stimulation and dorsal column spinal cord stimulation in a model of experimental painful diabetic polyneuropathy. CNS Neuroscience and Therapeutics, 2019, 25, 367-374.	3.9	14
27	Long-Term Spinal Cord Stimulation Alleviates Mechanical Hypersensitivity and Increases Peripheral Cutaneous Blood Perfusion in Experimental Painful Diabetic Polyneuropathy. Neuromodulation, 2018, 21, 472-479.	0.8	19
28	RNA-seq of spinal cord from nerve-injured rats after spinal cord stimulation. Molecular Pain, 2018, 14, 174480691881742.	2.1	39
29	Spinal Cord Stimulation With "Conventional Clinical―and Higher Frequencies on Activity and Responses of Spinal Neurons to Noxious Stimuli: An Animal Study. Neuromodulation, 2018, 21, 440-447.	0.8	22
30	Spinal Cord Stimulation. , 2018, , 161-178.		9
31	Cerebrospinal fluid from Alzheimer patients affects cell-mediated nerve growth factor production and cell survival in vitro. Experimental Cell Research, 2018, 371, 175-184.	2.6	11
32	Effects of Spinal Cord Stimulation on Cardiac Sympathetic Nerve Activity in Patients with Heart Failure. PACE - Pacing and Clinical Electrophysiology, 2017, 40, 504-513.	1.2	10
33	Spinal cord stimulation in heart failure: effect on diseaseâ€associated biomarkers. European Journal of Heart Failure, 2017, 19, 283-286.	7.1	5
34	Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation, 2017, 20, 525-533.	0.8	152
35	Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation, 2016, 19, 373-384.	0.8	171
36	Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer's disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimer's Research and Therapy, 2016, 8, 30.	6.2	110

BENGT LINDEROTH

# A	ARTICLE	IF	CITATIONS
37 A	Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission nd inhibition of mechanical hypersensitivity by AÎ ² -fiber stimulation. Pain, 2016, 157, 2582-2593.	4.2	50
38 D H	Determining the Feasibility of SpinalÂCordÂNeuromodulation for the Treatment of Chronic Systolic Heart Failure. JACC: Heart Failure, 2016, 4, 129-136.	4.1	90
	High-Frequency (1 kHz) Spinal Cord Stimulation—Is Pulse Shape Crucial for the Efficacy? A Pilot Study. Neuromodulation, 2015, 18, 714-720.	0.8	22
	Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Izheimer's disease. Alzheimer's and Dementia, 2015, 11, 1316-1328.	0.8	50
41 p	herapeutic value of spinal cord stimulation in irritable bowel syndrome: a randomized crossover ilot study. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R887-R894.	1.8	25
42 TI	herapy using implanted organic bioelectronics. Science Advances, 2015, 1, e1500039.	10.3	161
	22-383: ENCAPSULATED CELL BIODELIVERY OF NGF TO CHOLINERGIC BASAL FOREBRAIN IN ALZHEIMER'S DISEASE PATIENTS: A DOSE-ESCALATION STUDY. , 2014, 10, P618-P619.		0
	he Appropriate Use of Neurostimulation: New and Evolving Neurostimulation Therapies and Applicable Treatment for Chronic Pain and Selected Disease States. Neuromodulation, 2014, 17, 599-615.	0.8	100
	fficacy of Kilohertz-Frequency and Conventional Spinal Cord Stimulation in Rat Models of Different Pain Conditions. Neuromodulation, 2014, 17, 226-235.	0.8	99
46 Ti	he Appropriate Use of Neurostimulation of the Spinal Cord and Peripheral Nervous System for the reatment of Chronic Pain and Ischemic Diseases: The Neuromodulation Appropriateness Consensus Committee. Neuromodulation, 2014, 17, 515-550.	0.8	441
	Brain Changes in Alzheimer's Disease Patients with Implanted Encapsulated Cells Releasing Nerve Growth Factor. Journal of Alzheimer's Disease, 2014, 43, 1059-1072.	2.6	71
	22-387: NGF CELL THERAPY IN AD PATIENTS: EFFECTS ON CSF CHOLINERGIC BIOMARKERS. , 2014, 10, 2620-P620.		0
49 Po To	Percutaneous Retrogasserian Balloon Compression for Trigeminal Neuralgia: Review of Critical Technical Details and Outcomes. World Neurosurgery, 2013, 79, 359-368.	1.3	70
50 S N	pinal GABAergic Mechanisms in the Effects of Spinal Cord Stimulation in a Rodent Model of Ieuropathic Pain: Is GABA Synthesis Involved?. Neuromodulation, 2013, 16, 114-120.	0.8	26
	Incapsulated Cell Biodelivery of Nerve Growth Factor to the Basal Forebrain in Patients with Nzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2012, 33, 18-28.	1.5	123
52 N	leural Mechanisms of Spinal Cord Stimulation. International Review of Neurobiology, 2012, 107, 87-119.	2.0	87
	argeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a echnology platform for restorative neurosurgery. Journal of Neurosurgery, 2012, 117, 340-347.	1.6	107

#	Article	IF	CITATIONS
55	Retrogasserian Glycerol Rhizolysis in Trigeminal Neuralgia. , 2012, , 1393-1408.		3
56	Poor sleep and pain: Does spinal oxidative stress play a role?. Scandinavian Journal of Pain, 2011, 2, 62-63.	1.3	0
57	Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia–reperfusion model. Heart Rhythm, 2011, 8, 892-898.	0.7	63
58	Invasive neurostimulation in facial pain and headache syndromes. European Journal of Pain Supplements, 2011, 5, 409-421.	0.0	6
59	The Interaction Between Antidepressant Drugs and the Pain-Relieving Effect of Spinal Cord Stimulation in a Rat Model of Neuropathy. Anesthesia and Analgesia, 2011, 113, 1260-1265.	2.2	21
60	Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain, 2011, 152, 1666-1673.	4.2	119
61	Increased efficacy of early spinal cord stimulation in an animal model of neuropathic pain. European Journal of Pain, 2011, 15, 111-117.	2.8	32
62	Pharmacologically enhanced spinal cord stimulation for pain: an evolving strategy. Pain Management, 2011, 1, 441-449.	1.5	7
63	Factors That Influence Outcome of Percutaneous Balloon Compression in the Treatment of Trigeminal Neuralgia. Neurosurgery, 2010, 67, 925-934.	1.1	90
64	Spinal Cord Stimulation. Anesthesiology, 2010, 113, 1265-1267.	2.5	74
65	Intrathecal Clonidine and Baclofen Enhance the Pain-Relieving Effect of Spinal Cord Stimulation. Neurosurgery, 2010, 67, 173-181.	1.1	57
66	Effects of spinal cord stimulation with "standard clinical―and higher frequencies on peripheral blood flow in rats. Brain Research, 2010, 1313, 53-61.	2.2	37
67	The predictive power of balloon shape and change of sensory functions on outcome of percutaneous balloon compression for trigeminal neuralgia. Journal of Neurosurgery, 2010, 113, 498-507.	1.6	59
68	Comparison of percutaneous balloon compression and glycerol rhizotomy for the treatment of trigeminal neuralgia. Journal of Neurosurgery, 2010, 113, 486-492.	1.6	76
69	"The failed back surgery syndrome― Definition and therapeutic algorithms — An update. European Journal of Pain Supplements, 2010, 4, 273-286.	0.0	39
70	Spinal Cord Stimulation. , 2009, , 1005-1011.		9
71	Pain relief by spinal cord stimulation involves serotonergic mechanisms: An experimental study in a rat model of mononeuropathy. Pain, 2009, 147, 241-248.	4.2	133
72	Spinal cord stimulation: A brief update on mechanisms of action. European Journal of Pain Supplements, 2009, 3, 89-93.	0.0	24

#	Article	IF	CITATIONS
73	Mechanisms of Spinal Cord Stimulation in Neuropathic and Ischemic Pain Syndromes. , 2009, , 345-354.		11
74	Spinal cord stimulation in adolescents with complex regional pain syndrome type I (CRPSâ€I). European Journal of Pain, 2008, 12, 53-59.	2.8	68
75	Baclofen-enhanced spinal cord stimulation and intrathecal baclofen alone for neuropathic pain: Long-term outcome of a pilot study. European Journal of Pain, 2008, 12, 132-136.	2.8	82
76	Extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways involved in spinal cord stimulation (SCS)-induced vasodilation. Brain Research, 2008, 1207, 73-83.	2.2	32
77	Neuromodulation of Thoracic Intraspinal Visceroreceptive Transmission by Electrical Stimulation of Spinal Dorsal Column and Somatic Afferents in Rats. Journal of Pain, 2008, 9, 71-78.	1.4	34
78	Muscarinic receptor activation potentiates the effect of spinal cord stimulation on pain-related behavior in rats with mononeuropathy. Neuroscience Letters, 2008, 436, 7-12.	2.1	51
79	Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain, 2008, 139, 136-145.	4.2	164
80	Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: A review of experimental studies. Autonomic Neuroscience: Basic and Clinical, 2008, 138, 9-23.	2.8	141
81	DIPLOPIA AFTER BALLOON COMPRESSION OF RETROGASSERIAN GANGLION ROOTLETS FOR TRIGEMINAL NEURALGIA. Neurosurgery, 2008, 62, E533-E534.	1.1	17
82	Effects of Spinal Cord Stimulation with different frequencies on blood flow in the rat hind paw. FASEB Journal, 2008, 22, 967.11.	0.5	0
83	Avoiding Complications From Spinal Cord Stimulation: Practical Recommendations From an International Panel of Experts. Neuromodulation, 2007, 10, 24-33.	0.8	127
84	Effects of Spinal Cord Stimulation on Peripheral Blood Circulation in Rats With Streptozotocin-Induced Diabetes. Neuromodulation, 2007, 10, 216-223.	0.8	14
85	Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation. Brain Research, 2007, 1156, 80-92.	2.2	48
86	Spinal cord stimulation produced vasodilation in streptozotocinâ€induced diabetic rats. FASEB Journal, 2007, 21, A1370.	0.5	0
87	Estimulación medular y cerebral. , 2007, , 577-597.		0
88	Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat. Neuroscience Letters, 2006, 399, 85-90.	2.1	129
89	Response to spinal cord stimulation in variants of the spared nerve injury pain model. Neuroscience Letters, 2006, 400, 115-120.	2.1	47
90	Mechanisms of Spinal Cord Stimulation in Painful Syndromes: Role of Animal Models. Pain Medicine, 2006, 7, S14-S26.	1.9	100

#	Article	IF	CITATIONS
91	Sensory fibers containing vanilloid receptor-1 (VR-1) mediate spinal cord stimulation-induced vasodilation. Brain Research, 2006, 1107, 177-184.	2.2	42
92	Mode of Action of Spinal Cord Stimulation in Neuropathic Pain. Journal of Pain and Symptom Management, 2006, 31, S6-S12.	1.2	139
93	Spinal cord and brain stimulation. , 2006, , 563-582.		13
94	Spinal cord stimulation attenuates visceromotor reflexes in a rat model of post-inflammatory colonic hypersensitivity. Autonomic Neuroscience: Basic and Clinical, 2005, 122, 69-76.	2.8	35
95	Intrathecal baclofen as adjuvant therapy to enhance the effect of spinal cord stimulation in neuropathic pain: a pilot study. European Journal of Pain, 2004, 8, 377-383.	2.8	96
96	Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles. Autonomic Neuroscience: Basic and Clinical, 2004, 111, 37-47.	2.8	35
97	Mechanisms of sustained cutaneous vasodilation induced by spinal cord stimulation. Autonomic Neuroscience: Basic and Clinical, 2004, 114, 55-60.	2.8	48
98	Intrathecal Clonidine Potentiates Suppression of Tactile Hypersensitivity by Spinal Cord Stimulation in a Model of Neuropathy. Anesthesia and Analgesia, 2004, 99, 135-139.	2.2	55
99	Role of primary afferents in spinal cord stimulation-induced vasodilation: characterization of fiber types. Brain Research, 2003, 959, 191-198.	2.2	45
100	Spinal cord stimulation inhibits long-term potentiation of spinal wide dynamic range neurons. Brain Research, 2003, 973, 39-43.	2.2	79
101	Microdialysis in pain research. Advanced Drug Delivery Reviews, 2003, 55, 1065-1079.	13.7	30
102	Attenuation by spinal cord stimulation of a nociceptive reflex generated by colorectal distention in a rat model. Autonomic Neuroscience: Basic and Clinical, 2003, 104, 17-24.	2.8	46
103	Local cooling alters neural mechanisms producing changes in peripheral blood flow by spinal cord stimulation. Autonomic Neuroscience: Basic and Clinical, 2003, 104, 117-127.	2.8	28
104	Implantation of Laminotomy Electrodes for Spinal Cord Stimulation in Spinal Anesthesia with Intraoperative Dorsal Column Activation. Neurosurgery, 2003, 53, 1150-1154.	1.1	44
105	Gabapentin and pregabalin suppress tactile allodynia and potentiate spinal cord stimulation in a model of neuropathy. European Journal of Pain, 2002, 6, 261-272.	2.8	104
106	Neuromodulation therapy does not influence blood flow distribution or left-ventricular dynamics during acute myocardial ischemia. Autonomic Neuroscience: Basic and Clinical, 2001, 91, 47-54.	2.8	45
107	Low intensity spinal cord stimulation may induce cutaneous vasodilation via CGRP release. Brain Research, 2001, 896, 183-187.	2.2	59
108	Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain, 2000, 88, 239-248,	4.2	265

BENGT LINDEROTH

#	Article	IF	CITATIONS
109	Neurotransmitter and Inflammatory Correlates in Experimental Neuropathy: Modulation by Electric Spinal Cord Stimulation. , 2000, , 57-68.		0
110	Opposite effects of spinal cord stimulation in different phases of carrageenan-induced hyperalgesia. European Journal of Pain, 1999, 3, 365-374.	2.8	16
111	Physiology of Spinal Cord Stimulation: Review and Update. Neuromodulation, 1999, 2, 150-164.	0.8	281
112	Spinal cord stimulation attenuates dorsal horn neuronal hyperexcitability in a rat model of mononeuropathy. Pain, 1999, 79, 223-233.	4.2	199
113	Spinal Cord Stimulation Improves Survival in Ischemic Skin Flaps: An Experimental Study of the Possible Mediation by Calcitonin Gene-Related Peptide. Plastic and Reconstructive Surgery, 1999, 103, 1221-1228.	1.4	24
114	Spinal Cord Stimulation Improves Survival in Ischemic Skin Flaps: An Experimental Study of the Possible Mediation by Calcitonin Gene-Related Peptide. Plastic and Reconstructive Surgery, 1999, 103, 1221-1228.	1.4	39
115	Effect of spinal cord stimulation on tactile hypersensitivity in mononeuropathic rats is potentiated by simultaneous GABAB and adenosine receptor activation. Neuroscience Letters, 1998, 247, 183-186.	2.1	146
116	Adenosine receptor activation suppresses tactile hypersensitivity and potentiates spinal cord stimulation in mononeuropathic rats. Neuroscience Letters, 1997, 223, 173-176.	2.1	94
117	Spinal cord stimulation attenuates augmented dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism. Pain, 1997, 73, 87-95.	4.2	311
118	Modulation of Spinal Pain Mechanisms by Spinal Cord Stimulation and the Potential Role of Adjuvant Pharmacotherapy. Stereotactic and Functional Neurosurgery, 1997, 68, 129-140.	1.5	41
119	Effects of spinal cord stimulation on touch-evoked allodynia involve GABAergic mechanisms. An experimental study in the mononeuropathic rat. Pain, 1996, 66, 287-295.	4.2	176
120	Photochemically induced ischaemic lesion of the rat sciatic nerve. A novel method providing high incidence of mononeuropathy. NeuroReport, 1996, 7, 2619-2624.	1.2	68
121	Release of Î ³ -Aminobutyric Acid in the Dorsal Horn and Suppression of Tactile Allodynia by Spinal Cord Stimulation in Mononeuropathic Rats. Neurosurgery, 1996, 39, 367-375.	1.1	338
122	Effects of spinal cord stimulation on the flexor reflex and involvement of supraspinal mechanisms: an experimental study in mononeuropathic rats. Journal of Neurosurgery, 1996, 84, 244-249.	1.6	32
123	Preemptive Spinal Cord Stimulation Reduces Ischemia in an Animal Model of Vasospasm. Neurosurgery, 1995, 37, 266-272.	1.1	38
124	Dorsal column stimulation: modulation of somatosensory and autonomic function. Seminars in Neuroscience, 1995, 7, 263-277.	2.2	26
125	Repeated spinal cord stimulation decreases the extracellular level of Î ³ -aminobutyric acid in the periaqueductal gray matter of freely moving rats. Brain Research, 1995, 699, 231-241.	2.2	70

126 Spinal cord stimulation in ischemia and ischemic pain Possible mechanisms of action. , 1995, , 19-35.

25

#	Article	IF	CITATIONS
127	Severe Peripheral Ischemia After Vasospasm May Be Prevented By Spinal Cord Stimulation. A Preliminary Report of a Study in a Free-Flap Animal Model. Acta Neurochirurgica Supplementum, 1995, 64, 101-105.	1.0	7
128	Preemptive Spinal Cord Stimulation Reduces Ischemia in an Animal Model of Vasospasm. Neurosurgery, 1995, 37, 266???272.	1.1	1
129	Gamma-aminobutyric Acid Is Released in the Dorsal Horn by Electrical Spinal Cord Stimulation. Neurosurgery, 1994, 34, 484-489.	1.1	118
130	â€~Mirror pain' and indications of bilateral dorsal horn activation in response to unilateral nociception. Pain, 1994, 58, 277.	4.2	11
131	Sympathetic Mediation of Peripheral Vasodilation Induced by Spinal Cord Stimulation. Neurosurgery, 1994, 35, 711-719.	1.1	137
132	Gamma-aminobutyric Acid Is Released in the Dorsal Horn by Electrical Spinal Cord Stimulation. Neurosurgery, 1994, 34, 484???489.	1.1	7
133	Dorsal Column Stimulation Induces Release of Serotonin and Substance P in the Cat Dorsal Horn. Neurosurgery, 1992, 31, 289-297.	1.1	172
134	Dorsal Column Stimulation Induces Release of Serotonin and Substance P in the Cat Dorsal Horn. Neurosurgery, 1992, 31, 289???297.	1.1	16
135	Peripheral Vasodilatation after Spinal Cord Stimulation: Animal Studies of Putative Effector Mechanisms. Neurosurgery, 1991, 28, 187-195.	1.1	129
136	Effects of Sympathectomy on Skin and Muscle Microcirculation during Dorsal Column Stimulation: Animal Studies. Neurosurgery, 1991, 29, 874-879.	1.1	103
137	Meningitis due to gemella haemolysans after neurosurgical treatment of trigeminal neuralgia. Scandinavian Journal of Infectious Diseases, 1991, 23, 503-505.	1.5	33
138	In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei. Brain Research, 1990, 535, 227-236.	2.2	48
139	Tachykinin release from rat spinal cord in vitro and in vivo in response to various stimuli. Regulatory Peptides, 1988, 21, 129-140.	1.9	42