List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1219009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bivalent single domain antibody constructs for effective neutralization of Venezuelan equine encephalitis. Scientific Reports, 2022, 12, 700.	3.3	2
2	Stabilization of a Broadly Neutralizing Anti-Chikungunya Virus Single Domain Antibody. Frontiers in Medicine, 2021, 8, 626028.	2.6	8
3	Single-Domain Antibodies for the Detection of SARS-CoV-2 Nucleocapsid Protein. Analytical Chemistry, 2021, 93, 7283-7291.	6.5	30
4	High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Scientific Reports, 2020, 10, 22370.	3.3	95
5	Selection and Characterization of Single-Domain Antibodies for Detection of Lassa Nucleoprotein. Antibodies, 2020, 9, 71.	2.5	3
6	Lipid-tagged single domain antibodies for improved enzyme-linked immunosorbent assays. Journal of Immunological Methods, 2020, 481-482, 112790.	1.4	3
7	Multi-Enzyme Assembly on T4 Phage Scaffold. Frontiers in Bioengineering and Biotechnology, 2020, 8, 571.	4.1	14
8	Oriented Immobilization of Single-Domain Antibodies Using SpyTag/SpyCatcher Yields Improved Limits of Detection. Analytical Chemistry, 2019, 91, 9424-9429.	6.5	54
9	Experimental evaluation of singleâ€domain antibodies predicted by molecular dynamics simulations to have elevated thermal stability. Protein Science, 2019, 28, 1909-1912.	7.6	9
10	Sequence Tolerance of a Single-Domain Antibody with a High Thermal Stability: Comparison of Computational and Experimental Fitness Profiles. ACS Omega, 2019, 4, 10444-10454.	3.5	4
11	Selection and characterization of protective anti-chikungunya virus single domain antibodies. Molecular Immunology, 2019, 105, 190-197.	2.2	23
12	Orthogonal Synthetic Zippers as Protein Scaffolds. ACS Omega, 2018, 3, 4810-4815.	3.5	13
13	Selection of Single-Domain Antibodies towards Western Equine Encephalitis Virus. Antibodies, 2018, 7, 44.	2.5	9
14	Selection and Characterization of Anti-Dengue NS1 Single Domain Antibodies. Scientific Reports, 2018, 8, 18086.	3.3	19
15	Genetic Fusion of an Anti-BclA Single-Domain Antibody with Beta Galactosidase. Antibodies, 2018, 7, 36.	2.5	8
16	Nanoplasmonic pillars engineered for single exosome detection. PLoS ONE, 2018, 13, e0202773.	2.5	59
17	Label free checkerboard assay to determine overlapping epitopes of Ebola virus VP-40 antibodies using surface plasmon resonance. Journal of Immunological Methods, 2017, 442, 42-48.	1.4	10
18	Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm. Journal of Immunological Methods, 2017, 443, 64-67.	1.4	24

#	Article	IF	CITATIONS
19	Thermal stabilization of anti-Î \pm -cobratoxin single domain antibodies. Toxicon, 2017, 129, 68-73.	1.6	17
20	Evaluation of anti-botulinum neurotoxin single domain antibodies with additional optimization for improved production and stability. Toxicon, 2017, 135, 51-58.	1.6	23
21	Effect of Linker Length on Cell Capture by Poly(ethylene glycol)-Immobilized Antimicrobial Peptides. Langmuir, 2017, 33, 2878-2884.	3.5	14
22	Kinetic enhancement in high-activity enzyme complexes attached to nanoparticles. Nanoscale Horizons, 2017, 2, 241-252.	8.0	21
23	Nanoparticle cellular uptake by dendritic wedge peptides: achieving single peptide facilitated delivery. Nanoscale, 2017, 9, 10447-10464.	5.6	28
24	Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies. MAbs, 2017, 9, 43-57.	5.2	16
25	Bglbrick strategy for the construction of single domain antibody fusions. Heliyon, 2017, 3, e00474.	3.2	10
26	Improving biosensing activity to carcinoembryonic antigen with orientated single domain antibodies. Heliyon, 2017, 3, e00478.	3.2	9
27	Pairing Alpaca and Llama-Derived Single Domain Antibodies to Enhance Immunoassays for Ricin. Antibodies, 2017, 6, 3.	2.5	6
28	Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview. Frontiers in Immunology, 2017, 8, 865.	4.8	68
29	Selection, characterization, and thermal stabilization of llama single domain antibodies towards Ebola virus glycoprotein. Microbial Cell Factories, 2017, 16, 223.	4.0	24
30	Integrating scFv into xMAP Assays for the Detection of Marine Toxins. Toxins, 2016, 8, 346.	3.4	7
31	Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein. PLoS ONE, 2016, 11, e0160534.	2.5	11
32	Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 56-65.	4.4	16
33	Selection and characterization of single domain antibodies against human CD20. Molecular Immunology, 2016, 78, 146-154.	2.2	3
34	The influence of cell penetrating peptide branching on cellular uptake of QDs. , 2016, , .		1
35	Evanescent wave fluorescence biosensors: Advances of the last decade. Biosensors and Bioelectronics, 2016, 76, 103-112.	10.1	115
36	Oriented Peptide Immobilization on Microspheres. Methods in Molecular Biology, 2016, 1352, 183-197.	0.9	1

#	Article	IF	CITATIONS
37	Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates. PLoS ONE, 2016, 11, e0149393.	2.5	30
38	Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microbial Cell Factories, 2015, 14, 158.	4.0	37
39	Ultrasensitive Detection of Ricin Toxin in Multiple Sample Matrixes Using Single-Domain Antibodies. Analytical Chemistry, 2015, 87, 6570-6577.	6.5	45
40	Improving the biophysical properties of anti-ricin single-domain antibodies. Biotechnology Reports (Amsterdam, Netherlands), 2015, 6, 27-35.	4.4	35
41	Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection. Talanta, 2015, 144, 439-444.	5.5	8
42	Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies. Plasmonics, 2015, 10, 1649-1655.	3.4	15
43	Can template-based protein models guide the design of sequence fitness for enhanced thermal stability of single domain antibodies?. Protein Engineering, Design and Selection, 2015, 28, 395-402.	2.1	7
44	Evaluation of Disulfide Bond Position to Enhance the Thermal Stability of a Highly Stable Single Domain Antibody. PLoS ONE, 2014, 9, e115405.	2.5	43
45	Isolation and Epitope Mapping of Staphylococcal Enterotoxin B Single-Domain Antibodies. Sensors, 2014, 14, 10846-10863.	3.8	10
46	Thermostable single domain antibody–maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Analytical Biochemistry, 2014, 447, 64-73.	2.4	22
47	Thermal stability and refolding capability of shark derived single domain antibodies. Molecular Immunology, 2014, 59, 194-199.	2.2	41
48	Enhanced stabilization of a stable single domain antibody for SEB toxin by random mutagenesis and stringent selection. Protein Engineering, Design and Selection, 2014, 27, 89-95.	2.1	34
49	Negative tail fusions can improve ruggedness of single domain antibodies. Protein Expression and Purification, 2014, 95, 226-232.	1.3	22
50	Bioconjugates of rhizavidin with single domain antibodies as bifunctional immunoreagents. Journal of Immunological Methods, 2014, 411, 37-42.	1.4	22
51	Development and Evaluation of Single Domain Antibodies for Vaccinia and the L1 Antigen. PLoS ONE, 2014, 9, e106263.	2.5	23
52	Single domain antibody–alkaline phosphatase fusion proteins for antigen detection — Analysis of affinity and thermal stability of single domain antibody. Journal of Immunological Methods, 2013, 393, 1-7.	1.4	33
53	Single domain antibody–quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance. Analytica Chimica Acta, 2013, 786, 132-138.	5.4	58
54	Structure of a low-melting-temperature anti-cholera toxin: llama VHH domain. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 90-93.	0.7	6

#	Article	IF	CITATIONS
55	Comparison of single domain antibody immobilization strategies evaluated by surface plasmon resonance. Journal of Immunological Methods, 2013, 388, 68-77.	1.4	30
56	SdAb heterodimer formation using leucine zippers. , 2013, , .		3
57	Selection and evaluation of single domain antibodies toward MS2 phage and coat protein. Molecular Immunology, 2013, 53, 118-125.	2.2	19
58	Comparison of an antibody and its recombinant derivative for the detection of the small molecule explosive 2,4,6-trinitrotoluene. Analytica Chimica Acta, 2013, 759, 100-104.	5.4	20
59	Optimizing Protein Coordination to Quantum Dots with Designer Peptidyl Linkers. Bioconjugate Chemistry, 2013, 24, 269-281.	3.6	45
60	Selection and Characterization of Single Domain Antibodies Specific for Bacillus anthracis Spore Proteins. Antibodies, 2013, 2, 152-167.	2.5	13
61	Contributions of the Complementarity Determining Regions to the Thermal Stability of a Single-Domain Antibody. PLoS ONE, 2013, 8, e77678.	2.5	33
62	Comparison of Immunoreactivity of Staphylococcal Enterotoxin B Mutants for Use as Toxin Surrogates. Analytical Chemistry, 2012, 84, 5198-5203.	6.5	14
63	Rugged Single Domain Antibody Detection Elements for Bacillus anthracis Spores and Vegetative Cells. PLoS ONE, 2012, 7, e32801.	2.5	40
64	Linking Single Domain Antibodies that Recognize Different Epitopes on the Same Target. Biosensors, 2012, 2, 43-56.	4.7	17
65	Surface Modification and Biomolecule Immobilization on Polymer Spheres for Biosensing Applications. Methods in Molecular Biology, 2011, 726, 77-94.	0.9	14
66	Evaluation of anti-hemagglutinin Hn-33 single domain antibodies: kinetics, binding epitopes, and thermal stability. Botulinum Journal, 2011, 2, 59.	0.2	1
67	Immunodiagnostic reagents using llama single domain antibody–alkaline phosphatase fusion proteins. Analytical Biochemistry, 2011, 417, 188-194.	2.4	35
68	Isolation of a Highly Thermal Stable Lama Single Domain Antibody Specific for Staphylococcus aureusEnterotoxin B. BMC Biotechnology, 2011, 11, 86.	3.3	38
69	Llama-Derived Single Domain Antibodies Specific for Abrus Agglutinin. Toxins, 2011, 3, 1405-1419.	3.4	22
70	Using llama derived single domain antibodies to target botulinum neurotoxins. Proceedings of SPIE, 2010, , .	0.8	0
71	A microflow cytometer on a chip. , 2010, , .		0
72	Detection of Fumonisin B1 and Ochratoxin A in Grain Products Using Microsphere-Based Fluid Array Immunoassays. Toxins, 2010, 2, 297-309.	3.4	34

#	Article	IF	CITATIONS
73	Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Analytical and Bioanalytical Chemistry, 2010, 398, 339-348.	3.7	29
74	A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays. Analytical and Bioanalytical Chemistry, 2010, 398, 1871-1881.	3.7	27
75	Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods. Sensing and Instrumentation for Food Quality and Safety, 2010, 4, 73-81.	1.5	48
76	Amplification of immunoassays using phage-displayed single domain antibodies. Journal of Immunological Methods, 2010, 352, 182-185.	1.4	25
77	Binding Kinetics of Antiricin Single Domain Antibodies and Improved Detection Using a B Chain Specific Binder. Analytical Chemistry, 2010, 82, 7202-7207.	6.5	45
78	Bead-Based Fluid Array Detection of Pentaerythritol Tetranitrate: Comparison of Monoclonal vs. Llama Polyclonal Antibodies. Analytical Letters, 2010, 43, 2913-2922.	1.8	9
79	Ricin Detection Using Phage Displayed Single Domain Antibodies. Sensors, 2009, 9, 542-555.	3.8	33
80	Spectral Tuning of Organic Nanocolloids by Controlled Molecular Interactions. ACS Nano, 2009, 3, 3214-3220.	14.6	26
81	Multiplexed Detection of Bacteria and Toxins Using a Microflow Cytometer. Analytical Chemistry, 2009, 81, 5426-5432.	6.5	101
82	Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab on A Chip, 2009, 9, 1942.	6.0	140
83	Microflow cytometer. Proceedings of SPIE, 2009, , .	0.8	1
84	Amplification of microsphere-based microarrays using catalyzed reporter deposition. Biosensors and Bioelectronics, 2008, 24, 324-328.	10.1	30
85	Discrimination between biothreat agents and â€~near neighbor' species using a resequencing array. FEMS Immunology and Medical Microbiology, 2008, 54, 356-364.	2.7	17
86	TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. Journal of Immunological Methods, 2008, 339, 47-54.	1.4	46
87	Comparison of detection and signal amplification methods for DNA microarrays. Molecular and Cellular Probes, 2008, 22, 294-300.	2.1	33
88	Thermostable Llama Single Domain Antibodies for Detection of Botulinum A Neurotoxin Complex. Analytical Chemistry, 2008, 80, 8583-8591.	6.5	49
89	Development of Antiricin Single Domain Antibodies Toward Detection and Therapeutic Reagents. Analytical Chemistry, 2008, 80, 9604-9611.	6.5	58
90	Evaluation of llama anti-botulinum toxin Heavy chain Antibody. Botulinum Journal, 2008, 1, 100.	0.2	10

#	Article	IF	CITATIONS
91	EVANESCENT WAVE FIBER OPTIC BIOSENSORS. , 2008, , 83-138.		5
92	SINGLE-DOMAIN ANTIBODIES: RUGGED RECOGNITION ELEMENTS FOR TOMORROW'S BIOSENSORS. , 2008, , 469-492.		3
93	Suspension Microarray Immunoassay Signal Amplification Using Multilayer Formation. Sensor Letters, 2008, 6, 213-218.	0.4	13
94	Selection of cholera toxin specific IgNAR single-domain antibodies from a naÃ⁻ve shark library. Molecular Immunology, 2007, 44, 1775-1783.	2.2	104
95	Antimicrobial Peptides: New Recognition Molecules for Detecting Botulinum Toxins. Sensors, 2007, 7, 2808-2824.	3.8	27
96	Development of a Luminex Based Competitive Immunoassay for 2,4,6-Trinitrotoluene (TNT). Environmental Science & Technology, 2007, 41, 2888-2893.	10.0	50
97	Multiplexed fluid array screening of phage displayed anti-ricin single domain antibodies for rapid assessment of specificity. BioTechniques, 2007, 43, 806-811.	1.8	22
98	Failure of layer-by-layer multilayers composed of neutravidin–biotin-labeled antibody for sandwich fluoroimmunosensing. Biosensors and Bioelectronics, 2007, 22, 3243-3246.	10.1	14
99	Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library. BMC Biotechnology, 2007, 7, 78.	3.3	53
100	Automated module for hybridization and staining of commercially produced nucleic acid microarrays. Microfluidics and Nanofluidics, 2007, 3, 623-628.	2.2	2
101	TNT Detection Using Multiplexed Liquid Array Displacement Immunoassays. Analytical Chemistry, 2006, 78, 2279-2285.	6.5	86
102	Facile Generation of Heat-Stable Antiviral and Antitoxin Single Domain Antibodies from a Semisynthetic Llama Library. Analytical Chemistry, 2006, 78, 8245-8255.	6.5	169
103	Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Review of Proteomics, 2006, 3, 511-524.	3.0	65
104	Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Analytica Chimica Acta, 2006, 575, 9-15.	5.4	101
105	Evanescent wave fluorescence biosensors. Biosensors and Bioelectronics, 2005, 20, 2470-2487.	10.1	260
106	Self-assembled luminescent CdSe–ZnS quantum dot bioconjugates prepared using engineered poly-histidine terminated proteins. Analytica Chimica Acta, 2005, 534, 63-67.	5.4	96
107	Receptor Protein-Based Bioconjugates of Highly Luminescent CdSe-ZnS Quantum Dots: Use in Biosensing Applications. ACS Symposium Series, 2005, , 16-30.	0.5	3
108	Application of a Homogenous Assay for the Detection of 2,4,6-Trinitrotoluene to Environmental Water Samples. Scientific World Journal, The, 2005, 5, 446-451.	2.1	7

#	Article	IF	CITATIONS
109	Can Luminescent Quantum Dots Be Efficient Energy Acceptors with Organic Dye Donors?. Journal of the American Chemical Society, 2005, 127, 1242-1250.	13.7	269
110	Fluoroimmunoassays Using Antibody-Conjugated Quantum Dots. , 2005, 303, 019-034.		30
111	Simplified Avidin–Biotin Mediated Antibody Attachment for a Surface Plasmon Resonance Biosensor. Sensor Letters, 2005, 3, 151-156.	0.4	8
112	Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Analytical Chemistry, 2004, 76, 684-688.	6.5	652
113	Microcapillary reversed-displacement immunosensor for trace level detection of TNT in seawater. Analytica Chimica Acta, 2004, 525, 199-204.	5.4	46
114	General Strategy for Biosensor Design and Construction Employing Multifunctional Surface-Tethered Components. Analytical Chemistry, 2004, 76, 5620-5629.	6.5	37
115	Eight Analyte Detection Using a Four-Channel Optical Biosensor. Sensor Letters, 2004, 2, 18-24.	0.4	20
116	Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement immunoassay. Analytical and Bioanalytical Chemistry, 2003, 375, 471-475.	3.7	55
117	Preparation of Quantum Dotâ~'Biotin Conjugates and Their Use in Immunochromatography Assays. Analytical Chemistry, 2003, 75, 4043-4049.	6.5	120
118	Detection of 2,4,6-Trinitrotoluene in Environmental Samples Using a Homogeneous Fluoroimmunoassay. Environmental Science & Technology, 2003, 37, 4733-4736.	10.0	31
119	2,4,6-Trinitrotoluene detection using recombinant antibodies. Journal of Environmental Monitoring, 2003, 5, 380.	2.1	40
120	RAPTOR: A fluoroimmunoassay-based fiber optic sensor for detection of biological threats. IEEE Sensors Journal, 2003, 3, 352-360.	4.7	49
121	Colloidal Semiconductor Quantum Dot Conjugates in Biosensing. , 2002, , 537-569.		24
122	<title>Application of luminescent CdSe-ZnS quantum dot bioconjugates in immuno- and fluorescence-quenching assays</title> . , 2002, , .		0
123	Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays. Analytical Chemistry, 2002, 74, 841-847.	6.5	430
124	Nine-Analyte Detection Using an Array-Based Biosensor. Analytical Chemistry, 2002, 74, 6114-6120.	6.5	145
125	Avidin:  A Natural Bridge for Quantum Dot-Antibody Conjugates. Journal of the American Chemical Society, 2002, 124, 6378-6382	13.7	518
126	Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor. Journal of Immunological Methods, 2002, 271, 17-24.	1.4	90

GEORGE P ANDERSON

#	Article	IF	CITATIONS
127	Luminescent Quantum Dot-Adaptor Protein-Antibody Conjugates for Use in Fluoroimmunoassays. Physica Status Solidi (B): Basic Research, 2002, 229, 407-414.	1.5	65
128	Use of Luminescent CdSe-ZnS Nanocrystal Bioconjugates in Quantum Dot-Based Nanosensors. Physica Status Solidi (B): Basic Research, 2002, 229, 427-432.	1.5	116
129	Selection of phage displayed peptides for the detection of 2,4,6-trinitrotoluene in seawater. Analytica Chimica Acta, 2002, 457, 13-19.	5.4	66
130	Detection of 2,4,6-trinitrotoluene in seawater using a reversed-displacement immunosensor. Analytical Biochemistry, 2002, 310, 36-41.	2.4	51
131	<title>Water quality monitoring using an automated portable fiber optic biosensor: RAPTOR</title> . , 2001, 4206, 58.		19
132	<title>Bioconjugates of luminescent CdSe-ZnS quantum dots with an engineered two-domain protein G for use in fluoroimmunoassays</title> . , 2001, , .		1
133	Bioconjugation of Highly Luminescent Colloidal CdSe–ZnS Quantum Dots with an Engineered Two-Domain Recombinant Protein. Physica Status Solidi (B): Basic Research, 2001, 224, 277-283.	1.5	1
134	Bioconjugates of Luminescent CdSe-ZnS Quantum Dots with Engineered Recombinant Proteins: Novel Self-Assembled Tools for Biosensing. Materials Research Society Symposia Proceedings, 2000, 642, 281.	0.1	1
135	Phage-displayed peptides as biosensor reagents. Journal of Molecular Recognition, 2000, 13, 382-387.	2.1	108
136	Multi-analyte interrogation using the fiber optic biosensor. Biosensors and Bioelectronics, 2000, 14, 771-777.	10.1	107
137	Self-Assembly of CdSeâ^'ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. Journal of the American Chemical Society, 2000, 122, 12142-12150.	13.7	1,675
138	Automated Fiber Optic Biosensor for Multiplexed Immunoassays. Environmental Science & Technology, 2000, 34, 2845-2850.	10.0	40
139	Phageâ€displayed peptides as biosensor reagents. Journal of Molecular Recognition, 2000, 13, 382-387.	2.1	2
140	Detecting staphylococcal enterotoxin B using an automated fiber optic biosensor. Biosensors and Bioelectronics, 1999, 14, 163-170.	10.1	82
141	Biological agent detection with the use of an airborne biosensor. Field Analytical Chemistry and Technology, 1999, 3, 307-314.	0.8	34
142	Remote Sensing Using an Airborne Biosensor. Environmental Science & Technology, 1998, 32, 2461-2466.	10.0	58
143	Quantifying Serum Antiplague Antibody with a Fiber-Optic Biosensor. Vaccine Journal, 1998, 5, 609-612.	2.6	26
144	Portable multichannel fiber optic biosensor for field detection. Optical Engineering, 1997, 36, 1008.	1.0	54

6

#	Article	IF	CITATIONS
145	<title>Enhanced biosensor performance using an avidin-biotin bridge for antibody immobilization</title> . , 1997, , .		4
146	Effectiveness of protein A for antibody immobilization for a fiber optic biosensor. Biosensors and Bioelectronics, 1997, 12, 329-336.	10.1	122
147	Fiber optic-based biosensor for ricin. Biosensors and Bioelectronics, 1997, 12, 937-945.	10.1	115
148	Assay Development for a Portable Fiberoptic Biosensor. ASAIO Journal, 1996, 42, 942-946.	1.6	30
149	Quantitating Staphylococcal Enterotoxin B in Diverse Media Using a Portable Fiber-Optic Biosensor. Analytical Biochemistry, 1996, 233, 50-57.	2.4	102
150	<title>Effect of wavelength and dye selection on biosensor response</title> . , 1995, , .		3
151	Regeneration of immobilized antibodies on fiber optic probes. Biosensors and Bioelectronics, 1994, 9, 585-592.	10.1	34
152	An evanescent wave biosensor. I. Fluorescent signal acquisition from step-etched fiber optic probes. IEEE Transactions on Biomedical Engineering, 1994, 41, 578-584.	4.2	50
153	An evanescent wave biosensor. II. Fluorescent signal acquisition from tapered fiber optic probes. IEEE Transactions on Biomedical Engineering, 1994, 41, 585-591.	4.2	79
154	Development of an evanescent wave fiber optic biosensor. IEEE Engineering in Medicine and Biology Magazine, 1994, 13, 358-363.	0.8	49
155	<title>Use of cyanine dyes with evanescent wave fiber optic biosensors</title> . , 1994, , .		3
156	A fiber optic biosensor: combination tapered fibers designed for improved signal acquisition. Biosensors and Bioelectronics, 1993, 8, 249-256.	10.1	88
157	Fiber-Optic Biosensor for the Detection of Hazardous Materials. ImmunoMethods, 1993, 3, 122-127.	0.8	51
158	<title>Evanescent-wave fiber optic biosensor: challenges for real-world sensing</title> . , 1993, , .		7
159	<title>Ray-tracing determination of evanescent-wave penetration depth in tapered fiber optic probes</title> . , 1993, , .		1
160	Fluorometer and tapered fiber optic probes for sensing in the evanscent wave. Optical Engineering, 1992, 31, 1458.	1.0	71
161	The Effect of Tapering the Optical Fiber on Evanescent Wave Measurements. Analytical Letters, 1992, 25, 1183-1199.	1.8	41

162 <title>Fiber-optic-based biosensor: signal enhancement in a production model</title>., 1992, 1648, 39.

GEORGE P ANDERSON

#	Article	IF	CITATIONS
163	PATHOPHYSIOLOGY OF HEPARINâ€INDUCED THROMBOCYTOPENIA. British Journal of Haematology, 1992, 82, 778-779.	2.5	3
164	Insights into heparinâ€induced thrombocytopenia. British Journal of Haematology, 1992, 80, 504-508.	2.5	65
165	Anti-GPIIb/IIIa (CD41) monoclonal antibody-induced platelet activation requires Fc receptor-dependent cell-cell interaction. British Journal of Haematology, 1991, 79, 75-83.	2.5	52
166	The purification of cytochrome f and plastocyanin using affinity chromatography. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 894, 327-331.	1.0	9
167	Reply to Tamilarasan and McMillin. Biophysical Journal, 1986, 50, 1213.	0.5	0
168	Plastocyanin conformation. An analysis of its near ultraviolet absorption and circular dichroic spectra. Biophysical Journal, 1986, 49, 891-900.	0.5	25
169	pH dependent conformational changes and electrostatic effects in plastocyanin. Photosynthesis Research, 1986, 10, 437-444.	2.9	1
170	Conformational changes in plastocyanin. Archives of Biochemistry and Biophysics, 1985, 237, 110-117.	3.0	22
171	Plastocyanin conformation: The effect of the oxidation state on the pKa of nitrotyrosine-83. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 810, 123-131.	1.0	26
172	Variable fluorescence of photosystem I particles and its application to the study of the structure and function of photosystem I. Archives of Biochemistry and Biophysics, 1984, 235, 449-460.	3.0	10