Karim Nader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12189427/publications.pdf

Version: 2024-02-01

88	14,395	54	83
papers	citations	h-index	g-index
95	95	95	9527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Memory Destabilization and Reconsolidation Dynamically Regulate the PKMζ Maintenance Mechanism. Journal of Neuroscience, 2021, 41, 4880-4888.	3.6	7
2	elF2 $\hat{l}\pm$ controls memory consolidation via excitatory and somatostatin neurons. Nature, 2020, 586, 412-416.	27.8	74
3	Amyloid Beta Secreted during Consolidation Prevents Memory Malleability. Current Biology, 2020, 30, 1934-1940.e4.	3.9	13
4	Impairments to Consolidation, Reconsolidation, and Long-Term Memory Maintenance Lead to Memory Erasure. Annual Review of Neuroscience, 2020, 43, 297-314.	10.7	30
5	Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. ELife, 2020, 9, .	6.0	32
6	Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiology of Learning and Memory, 2018, 154, 78-86.	1.9	39
7	A molecular mechanism governing memory precision. Nature Medicine, 2018, 24, 390-391.	30.7	7
8	Differential role of the anterior and intralaminar/lateral thalamic nuclei in systems consolidation and reconsolidation. Brain Structure and Function, 2018, 223, 63-76.	2.3	19
9	Cortico-hippocampal Schemas Enable NMDAR-Independent Fear Conditioning in Rats. Current Biology, 2018, 28, 2900-2909.e5.	3.9	16
10	Reconsolidating perceptual skills. Nature Human Behaviour, 2018, 2, 450-451.	12.0	0
10	Reconsolidating perceptual skills. Nature Human Behaviour, 2018, 2, 450-451. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677.	12.0 30.7	0
	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23,		
11	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677.	30.7	164
11 12	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677. An Update on Memory Reconsolidation Updating. Trends in Cognitive Sciences, 2017, 21, 531-545. The Xâ€linked inhibitor of apoptosis regulates longâ€term depression and learning rate. FASEB Journal,	30.7 7.8	164 366
11 12 13	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677. An Update on Memory Reconsolidation Updating. Trends in Cognitive Sciences, 2017, 21, 531-545. The Xâ€linked inhibitor of apoptosis regulates longâ€term depression and learning rate. FASEB Journal, 2016, 30, 3083-3090.	30.7 7.8 0.5	164 366 17
11 12 13 14	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677. An Update on Memory Reconsolidation Updating. Trends in Cognitive Sciences, 2017, 21, 531-545. The Xâ€kinked inhibitor of apoptosis regulates longâ€term depression and learning rate. FASEB Journal, 2016, 30, 3083-3090. Memory Reconsolidation. Current Topics in Behavioral Neurosciences, 2016, 37, 151-176. Altered Human Memory Modification in the Presence of Normal Consolidation. Cerebral Cortex, 2016,	30.7 7.8 0.5	164 366 17 55
11 12 13 14	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677. An Update on Memory Reconsolidation Updating. Trends in Cognitive Sciences, 2017, 21, 531-545. The Xâ€linked inhibitor of apoptosis regulates longâ€term depression and learning rate. FASEB Journal, 2016, 30, 3083-3090. Memory Reconsolidation. Current Topics in Behavioral Neurosciences, 2016, 37, 151-176. Altered Human Memory Modification in the Presence of Normal Consolidation. Cerebral Cortex, 2016, 26, 3828-3837.	30.7 7.8 0.5	164 366 17 55

#	Article	IF	Citations
19	Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor elF4E Binding Protein 2. Journal of Neuroscience, 2015, 35, 11125-11132.	3.6	48
20	Reconsolidation and the Dynamic Nature of Memory. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021782.	5 . 5	127
21	Systems Reconsolidation Reveals a Selective Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory Expression. Neuropsychopharmacology, 2015, 40, 480-487.	5 . 4	75
22	Enhancement of fear memory by retrieval through reconsolidation. ELife, 2014, 3, e02736.	6.0	84
23	Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes. Cell Reports, 2014, 9, 1742-1755.	6.4	174
24	Reconsolidation of Human Memory: Brain Mechanisms and Clinical Relevance. Biological Psychiatry, 2014, 76, 274-280.	1.3	195
25	The maintenance of longâ€term memory in the hippocampus depends on the interaction between <i>N</i> â€ethylmaleimideâ€sensitive factor and GluA2. Hippocampus, 2014, 24, 1112-1119.	1.9	32
26	GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130141.	4.0	60
27	Consolidation and Reconsolidation. , 2014, , 1-5.		1
28	The Discovery of Memory Reconsolidation. , 2013, , 1-13.		14
29	Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 2013, 493, 371-377.	27.8	451
30	Î ² -Adrenergic blockade during reactivation reduces the subjective feeling of remembering associated		
	with emotional episodic memories. Biological Psychology, 2013, 92, 227-232.	2.2	40
31	with emotional episodic memories. Biological Psychology, 2013, 92, 227-232. Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences, 2013, 17, 111-120.	2.2 7.8	276
31	with emotional episodic memories. Biological Psychology, 2013, 92, 227-232.		
	with emotional episodic memories. Biological Psychology, 2013, 92, 227-232. Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences, 2013, 17, 111-120. Learning and reconsolidation implicate different synaptic mechanisms. Proceedings of the National	7.8	276
32	with emotional episodic memories. Biological Psychology, 2013, 92, 227-232. Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences, 2013, 17, 111-120. Learning and reconsolidation implicate different synaptic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4798-4803. Control of Synaptic Plasticity and Memory via Suppression of Poly(A)-Binding Protein. Neuron, 2013,	7.8	276 65
32	with emotional episodic memories. Biological Psychology, 2013, 92, 227-232. Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences, 2013, 17, 111-120. Learning and reconsolidation implicate different synaptic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4798-4803. Control of Synaptic Plasticity and Memory via Suppression of Poly(A)-Binding Protein. Neuron, 2013, 78, 298-311.	7.8	2766565

#	Article	IF	CITATIONS
37	Pharmacological brake-release of mRNA translation enhances cognitive memory. ELife, 2013, 2, e00498.	6.0	541
38	The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neuroscience and Biobehavioral Reviews, 2012, 36, 1667-1707.	6.1	171
39	Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learning and Memory, 2012, 19, 449-452.	1.3	117
40	Neural Signature of Reconsolidation Impairments by Propranolol in Humans. Biological Psychiatry, 2012, 71, 380-386.	1.3	168
41	Preclinical Evaluation of Reconsolidation Blockade by Clonidine as a Potential Novel Treatment for Posttraumatic Stress Disorder. Neuropsychopharmacology, 2012, 37, 2789-2796.	5.4	60
42	Dorsal hippocampus is necessary for novel learning but sufficient for subsequent similar learning. Hippocampus, 2012, 22, 2157-2170.	1.9	27
43	Periodically reactivated context memory retains its precision and dependence on the hippocampus. Hippocampus, 2012, 22, 1092-1095.	1.9	54
44	On the Temporary Nature of Disruption of Fear-Potentiated Startle Following PKMζ Inhibition in the Amygdale. Frontiers in Behavioral Neuroscience, 2011, 5, 29.	2.0	7
45	Metyrapone Administration Reduces the Strength of an Emotional Memory Trace in a Long-Lasting Manner. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1221-E1227.	3.6	41
46	Systemic mifepristone blocks reconsolidation of cue-conditioned fear; Propranolol prevents this effect Behavioral Neuroscience, 2011, 125, 632-638.	1.2	77
47	PKMζ maintains 1â€day―and 6â€dayâ€old longâ€term object location but not object identity memory in dorsal hippocampus. Hippocampus, 2010, 20, 691-695.	1.9	68
48	PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nature Neuroscience, 2010, 13, 630-634.	14.8	258
49	Memory reconsolidation: an update. Annals of the New York Academy of Sciences, 2010, 1191, 27-41.	3.8	288
50	Evidence for the persistence of contextual fear memories following immediate extinction. European Journal of Neuroscience, 2010, 31, 1303-1311.	2.6	47
51	A Bridge Over Troubled Water: Reconsolidation as a Link Between Cognitive and Neuroscientific Memory Research Traditions. Annual Review of Psychology, 2010, 61, 141-167.	17.7	208
52	Storage or retrieval deficit: The yin and yang of amnesia. Learning and Memory, 2009, 16, 224-230.	1.3	74
53	Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nature Neuroscience, 2009, 12, 905-912.	14.8	271
54	A single standard for memory: the case for reconsolidation. Nature Reviews Neuroscience, 2009, 10, 224-234.	10.2	689

#	Article	IF	CITATIONS
55	Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. Journal of Psychiatric Research, 2008, 42, 503-506.	3.1	518
56	De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala. Learning and Memory, 2008, 15, 747-755.	1.3	98
57	elF2α Phosphorylation Bidirectionally Regulates the Switch from Short- to Long-Term Synaptic Plasticity and Memory. Cell, 2007, 129, 195-206.	28.9	437
58	A single standard for memory; the case for reconsolidation. Debates in Neuroscience, 2007, 1, 2-16.	1.7	19
59	Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. European Journal of Neuroscience, 2006, 24, 249-260.	2.6	95
60	NMDA receptors are critical for unleashing consolidated auditory fear memories. Nature Neuroscience, 2006, 9, 1237-1239.	14.8	289
61	Fading in. Learning and Memory, 2006, 13, 530-535.	1.3	60
62	Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3428-3433.	7.1	184
63	Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. European Journal of Neuroscience, 2005, 21, 283-289.	2.6	218
64	Translational control of hippocampal synaptic plasticity and memory by the eIF2 \hat{l} ± kinase GCN2. Nature, 2005, 436, 1166-1170.	27.8	344
65	Consolidation and Reconsolidation of Incentive Learning in the Amygdala. Journal of Neuroscience, 2005, 25, 830-835.	3.6	106
66	Response to Alberini: right answer, wrong question. Trends in Neurosciences, 2005, 28, 346-347.	8.6	31
67	Characterization of Fear Memory Reconsolidation. Journal of Neuroscience, 2004, 24, 9269-9275.	3.6	341
68	Memory Traces Unbound. ChemInform, 2003, 34, no.	0.0	1
69	Re-recording human memories. Nature, 2003, 425, 571-572.	27.8	78
70	Memory traces unbound. Trends in Neurosciences, 2003, 26, 65-72.	8.6	665
71	Response to Arshavsky: Challenging the old views. Trends in Neurosciences, 2003, 26, 466-468.	8.6	8
72	Functional Organization of Adult Motor Cortex Is Dependent upon Continued Protein Synthesis. Neuron, 2003, 40, 167-176.	8.1	134

#	Article	lF	CITATIONS
73	Cellular and Systems Reconsolidation in the Hippocampus. Neuron, 2002, 36, 527-538.	8.1	632
74	Motivational state determines the functional role of the mesolimbic dopamine system in the mediation of opiate reward processes. Behavioural Brain Research, 2002, 129, 17-29.	2.2	90
75	A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nature Neuroscience, 2002, 5, 837-838.	14.8	84
76	Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends in Neurosciences, 2001, 24, 540-546.	8.6	432
77	Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nature Neuroscience, 2001, 4, 687-688.	14.8	130
78	Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 2000, 406, 722-726.	27.8	2,270
79	The labile nature of consolidation theory. Nature Reviews Neuroscience, 2000, 1, 216-219.	10.2	500
80	Lesions of Periaqueductal Gray Dissociate-Conditioned Freezing From Conditioned Suppression Behavior in Rats. Learning and Memory, 1999, 6, 491-499.	1.3	92
81	A Two-Separate-Motivational-Systems Hypothesis of Opioid Addiction. Pharmacology Biochemistry and Behavior, 1998, 59, 1-17.	2.9	73
82	NEUROBIOLOGICAL CONSTRAINTS ON BEHAVIORAL MODELS OF MOTIVATION. Annual Review of Psychology, 1997, 48, 85-114.	17.7	103
83	Deprivation State Switches the Neurobiological Substrates Mediating Opiate Reward in the Ventral Tegmental Area. Journal of Neuroscience, 1997, 17, 383-390.	3.6	119
84	Clonidine antagonizes the aversive effects of opiate withdrawal and the rewarding effects of morphine only in opiate withdrawn rats Behavioral Neuroscience, 1996, 110, 389-400.	1.2	24
85	Neurobiology of withdrawal motivation: Evidence for two separate aversive effects produced in morphine-naive versus morphine-dependent rats by both naloxone and spontaneous withdrawal Behavioral Neuroscience, 1995, 109, 91-105.	1.2	56
86	Neuroleptics block high- but not low-dose heroin place preferences: Further evidence for a two-system model of motivation Behavioral Neuroscience, 1994, 108, 1128-1138.	1.2	39
87	Neurobiology of motivation: Double dissociation of two motivational mechanisms mediating opiate reward in drug-naive versus drug-dependent animals Behavioral Neuroscience, 1992, 106, 798-807.	1.2	96
88	The role of the lateral nucleus of the amygdala in auditory fear conditioning. , 0, , 299-325.		0